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Introduction 

An accurate estimation of the number of contributors in a DNA mixture is central to the 

downstream deconvolution of the sample.  Incorrect NOC estimations can negatively impact 

both likelihood ratios and the ultimate sample deconvolution [1, 2].  Traditionally, the maximum 

allele count method has been used to predict the number of contributors however, this method 

loses reliability when the samples have three or greater contributors [3-7].  Maximum likelihood 

estimation [8] and Markov chain Monte Carlo [9] methods have also been proposed. More 

recently, a machine learning based method for the estimation of the number of contributors was 

proposed [10]. 

Machine learning - a branch of artificial intelligence - is the systematic study of algorithms and 

systems that improve their knowledge or performance with experience [11]. A machine learning 

algorithm can, after exposure to an initial set of data, be used to generalize; meaning that it can 

create a predictive model capable of evaluating new, previously unseen examples. Machine 

learning is a widely-used approach with an incredibly diverse range of applications, including 

object recognition [12], natural language processing [13], and DNA sequence classification [14]. 

It is ideally suited for classification problems involving implicit patterns, and is most effective 

when used in conjunction with large amounts of data. Although machine learning has not 

previously been used within the domain of DNA mixture analysis, the problem area of 

determining the number of donors in a DNA mixture is well-suited to such an endeavor due to 

two key problem characteristics: there exists a large repository of human DNA mixture data in 

electronic format, and these data are high-dimensional and complex; patterns in such data are 

often non-obvious and beyond the effective reach of manual analysis but can be statistically 

evaluated using a machine learning algorithm. 

The goal of machine learning is to find the hypersurface - or for simpler, two-dimensional 

problems in feature space, the decision boundary - that best separates classes of samples. PACE, 

for example, separates single-source samples from two-person mixtures, and those two classes 

are separated from three-person mixtures, etc. We can use Fisher's canonical Iris data set as 

context for evaluating this goal. When there are only two classes (in this case, Iris species) to 

separate and two features (in this case, sepal width and petal height) used to separate them by, 

one can view the classification problem using a traditional scatterplot (Figure 1). That two-

dimensional plot in feature space becomes a cube when we add an additional feature (Figure 2), 

however, and high-dimensional feature space simply cannot be successfully navigated by a 

human analyst. This is where machine learning algorithms excel; they find the optimal 

hypersurface in high-dimensional feature space. 
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Within the specific context of estimating the number of contributors, such an approach not only 

minimizes prediction error but also produces mathematically valid probability approximations 

[15]. This approach is fully continuous; peak height ratios, for example, are an integral part of 

the initial construction of a learning algorithm's feature vector. The approach also leverages the 

general characteristic among machine learning algorithms of being able to find implicit patterns 

in complex data. And not least, such an approach is very fast, often taking only seconds to 

evaluate complex DNA mixtures. The one major drawback to such an approach is its reliance on 

a massive training data set used to learn the optimal model for the classification problem. This 

data library must be comprehensive in its portrayal of DNA mixtures, lest the eventual predictive 

model fare poorly when classifying mixtures substantively different from those it had initially 

been exposed to. Such a requirement in PACE's case has led to the collection of thousands of 

DNA samples. 

Methods 

It is inefficient for a machine learning to analyze raw data in many cases. With a fixed number of 

training samples, the predictive power of the algorithm reduces as the problem's dimensionality 

increases; this is known as the Hughes phenomenon [16], or as Bellman "curse of 

dimensionality" [17]. As a practical effect, the continual addition of new features to a feature 

vector ultimately leads to decreased accuracy of the resulting classification model; one cannot 

use a brute force solution and simply use the entirety of a complex data set for machine learning. 

The solution usually relied upon by data scientists is to intelligently reduce the dimensionality of 

the problem by compressing the data into a vector of relatively few, high-information features. In 

PACE's case these features are both native to the underlying data set (e.g. locus-specific and 

sample-wide peak counts) and derived from manipulations of the data set. 

Several algorithms have been successfully used in conjunction with PACE, two of which are the 

multilayer perceptron [18] and the support vector machine [19]. The Multilayer Perceptron 

(MLP) algorithm is an artificial neural network in which backward propagation of errors is used 

to train the network’s weights and thresholds. In this study, a single hidden layer of neurons was 

used, and the four output nodes correspond to the four classes of number of contributors. The 

Support Vector Machine (SVM) algorithm attempts to optimize classification by maximizing the 

distance between the margins of classes. There are both linear and non-linear versions of this 

classifier, the latter of which is specifically designed for classes, such as the number of 

contributors, that cannot be linearly separated. 

A machine learning algorithm will “learn” a predictive model, and that model in turn, is 

potentially capable of classifying new, unfamiliar data. This ability to predict outcome values for 

previously unseen data is termed generalization. Merely providing training data to a learning 

algorithm is an insufficient generalization strategy; the algorithm may end up learning specific 

patterns only found in the training data by chance, and would then erroneously leverage those 

patterns to aid with classification. To ensure generalization and avoid potential overfitting, the 

learning algorithm must be both trained and its predictive model must be tested, and it is the 

resulting testing accuracy, not the training accuracy, that serves to validate the learned model. 

Such an approach requires that the initial data set (in this case, the library of DNA mixtures) 
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must correspondingly be partitioned into completely separate training and testing subsets. For all 

modeling efforts herein, the training data set was created by randomly selecting 75% of the 

initial DNA samples, with the other 25% used for testing how generalizable the learned model is. 

Machine learning algorithms contain hyperparameters which can be loosely thought of as knobs 

that tune the algorithm and thereby affect its behavior. Some hyperparameters can have a 

nontrivial impact on the resulting training time or even classification accuracy. Any attempt to 

tune these hyperparameters and thereby maximize an algorithm's classification accuracy are 

typically accompanied by a further partitioning of training data to ensure that data used for 

“tuned” algorithm validation are not also used to validate the final model. A viable alternative to 

data partitioning is the technique of k-fold cross-validation. In this technique the algorithm is 

trained a total of k times, with a fraction 1/k of training examples left out each time for validation 

purposes [20], leading to k distinct “folds”. Each fold provides summary metrics that describe 

the algorithm’s performance for that particular training, and the results from each of the folds are 

averaged to provide an overall assessment of model performance. All hyperparameter tuning in 

this study utilizes 5-fold cross-validation on the training data set. 

In classification problems, the training data contain unequal instances for different classes. Four-

contributor samples, for example, are less common than three-contributor samples, which are 

less common than two-contributor samples. Machine learning algorithms are often sensitive to 

imbalance in the predictor classes, and will bias the prediction model towards the more common 

class. One solution is to perform oversampling, whereby an oversampling algorithm generate 

additional samples for the less-populous classes based on the characteristics of existing data. 

PACE uses random oversampling for multi-class sampling and SMOTE for binary oversampling 

[21]. 

Materials  

Sample sets included 1035 samples amplified with PowerPlex Fusion amplification kit (Promega 

Corp) and 1405 samples amplified with the Identifiler® amplification kit (Thermo Fisher 

Scientific). Additional details can be found in table 1. 

Table 1: Sample sets used for PACE analyses. 

 
Identifiler

®
  PowerPlex

®
 Fusion  

Sample # 1405 1035 

Individuals 16 45 

Template Range 12.5pg – 10.0ng 3.25pg – 4.0ng 

Mixture Ratios 28  38 

Instruments 5 (3100 & 3130) 6 (3100,3130 & 3500) 

Injection time / voltage 6 times   /     2 kVs 2 times    /     5 kVs 
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Each sample is analyzed by PACE and probabilities associated with each class is returned, i.e. a 

sample will have a probability associated with NOC 1, 2, 3 and 4. 

Results 

Processing speed 

Five samples were run using a64-bit Windows 10 laptop computer with an Intel Core i7 2.70gHz 

processor and 16GB of RAM. The four contributor samples with 6.0ng of template DNA 

amplified using the Identifiler amplification kit had the longest processing time (2 minutes 8s) 

due to the complexity of the resulting electropherogram (Table 2). 

Table 2: PACE processing speed. 

Sample 
Expected 

NOC 

Expected 

Ratio 
ng 

amplified 
Run 

time 

4_BU_0.2 4 1.6 : 3 : 1 : 1 0.2 37.8s 

4_BU_6 4 1.6 : 3 : 2 : 2 6.0 2m 8s 

280 3 1 : 1 : 3 0.15 7.3s 

981 3 6 : 1 : 1 2.0 3.2s 

501 2 19 : 1 0.0625 2.8s 

 

Number of contributor estimation 

Tables 3 and 4 include the results for the performance of PACE for Identifiler and preliminary 

results for PowerPlex Fusion, respectively. All “correct” calls are based on the maximum 

probability of NOC, i.e. the class with the highest probability returned by PACE.  There were no 

over/under estimations by greater than one contributor.   

Table 3: PACE- Identifiler results. 

  
PACE Predicted 

Number of Contributors Percent Correct 

  1 2 3 4 

Expected 

Number of 

Contributors 

1 94 0 0 0 100% 

2 3 152 0 0 98.1% 

3 0 2 72 0 97.3% 

4 0 0 0 29 100% 
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Table 4: PACE- PowerPlex Fusion results. 

  
PACE Predicted 

Number of Contributors Percent Correct 

  1 2 3 4 

Expected 

Number of 

Contributors 

1 68 0 0 0 100 % 

2 0 107 1 0 99 % 

3 0 4 58 2 91 % 

4 0 0 2 28 93 % 

 

Comparison to Maximum Allele Count Methods 

NOC accuracy was compared between PACE-Identifiler (Figure 3), PACE Fusion (Figure 4) and 

maximum allele count methods using the following thresholds: 50rfu, 100 rfu, and 150rfu and a 

dynamic threshold calculated based on sample-locus noise. 

 

Conclusions 

The machine learning approach represents a fully continuous and probabilistic approach to the 

prediction of the number of contributors.  The method is highly accurate, with over 90% 

accuracy when predicting three and 4+ contributor samples.  Computational resources will not 

need to change; existing computing resources will be sufficient to run PACE and will lead to 

rapid results in approximately 10-15seconds per sample. 
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Figures 

 

Figure 1:  A scatterplot showing the relationship between sepal width and petal height for two 

Iris species. 

 

 

Figure 2:  A cube showing the relationship between sepal width, petal width, and petal length for 

three Iris species. 
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Figure 3: Comparison of PAVE-Identifiler to MAC. [10] 

 

 

Figure 4: Comparison of PACE-PowerPlex Fusion to MAC. [10] 
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