COMPREHENSIVE ANALYSIS OF ALU ASSOCIATED DIVERSITY ON THE HUMAN SEX CHROMOSOMES

P. A. Callinan^{1*}, D. J. Hedges^{1*}, A-H. Salem^{1,2}, J. Xing¹, J. A. Walker¹, R. K. Garber¹, W. S. Watkins³, M. J. Bamshad^{3,4}, L. B. Jorde³ and M. A. Batzer¹

¹Department of Biological Sciences, Biological Computation and Visualization Center, Louisiana State University, Baton Rouge, Louisiana

²Department of Anatomy, Faculty of Medicine, Suez Canal University, Ismailia, Egypt

³Department of Human Genetics, University of Utah Health Sciences Center, Salt Lake City, UT

⁴Department of Pediatrics, University of Utah Health Sciences Center, Salt Lake City, UT

*Contributed equally to this work

A comprehensive analysis of the human sex chromosomes was undertaken to assess *Alu*-associated human genomic diversity and identify novel *Alu* insertion polymorphisms for the study of human evolution. 345 recently integrated *Alu* elements from eight different *Alu* subfamilies were identified on the X and Y-chromosomes, 225 of which were selected and analyzed by the polymerase chain reaction (PCR). From a total of 225 elements analyzed, 16 were found to be polymorphic on the X chromosome and 6 on the Y chromosome. In line with previous research using other classes of genetic markers, our results indicate reduced *Alu*-associated insertion polymorphism on the human sex chromosomes, presumably reflective of the reduced recombination rates and lower effective population sizes on the sex chromosomes. The *Alu* insertion polymorphisms identified in this study should prove useful for the study of human population genetics.