# Popstats Parentage Statistics Strength of Genetic Evidence In Parentage Testing 

Arthur J. Disenberg, Ph.D. Director
DNA Identity Laboratory UNT-Health Science Center
$\square$
eisenber@hsc.unt.edu

## PATERNITY TESTING



## Typical Paternity Test

## Two possible outcomes of test:

## Inclusion

The obligate paternal alleles in the child all have corresponding alleles in the Alleged Father

Exclusion
The obligate paternal alleles in the child DO NOT have corresponding alleles in the Alleged Father

## Exclusion



## Results

# The Tested Man is Excluded as the Biological Father of the Child in Question 



## Inclusion



## Results

The Tested Man Cannot be Excluded as the Biological Father of the Child in Question

Several Statistical Values are Calculated to Assess the Strength of the Genetic Evidence

## Language of Paternity Testing

PI<br>Paternity Index

CPI
Combined Paternity Index
W
Probability of Paternity
PE
Probability of Exclusion

# Paternity Index summarizes information provided by genetic testing 

- Likelihood Ratio
- Probability that some event will occur under a set of conditions or assumptions
- Divided by the probability that the same event will occur under a set of different mutually exclusive conditions or assumptions


## Paternity Index

- Observe three types - from a man, a woman, and a child
- Assume true trio - the man and woman are the true biologic parents of child
- Assume false trio - woman is the mother, man is not the father
- In the false trio, the child's father is a man of unknown type, selected at random from population (unrelated to mother and tested man)


## Standard Paternity Index

- In paternity testing, the event is observing three phenotypes, those of a woman, man and child.
- The assumptions made for calculating the numerator ( $\mathbf{X}$ ) is that these three persons are a "true trio".
- For the denominator (Y) the assumptions is M


## Paternity Analysis Hypothetical case

# DNA Analysis Results in Three Genotypes 

Mother
Child
Alleged Father
(AB)
(BC)
(CD)

## Paternity Analysis



An AB mother and a CD father can have four possible offspring:

$$
\mathrm{AC}, \mathrm{AD}, \mathrm{BC}, \mathrm{BD}
$$

# Standard Paternity Index 

PI determination in hypothetical DNA System

$$
\mathbf{P I}=\mathbf{X} / \mathbf{Y}
$$

Numerator
$\mathrm{X}=$ is the probability that (1) a woman randomly selected from a population is type $A B$, and (2) a man randomly selected from a population is type CD, and (3) their child is type BC .

# Standard Paternity Index 

PI determination in hypothetical DNA System

$$
\mathbf{P I}=\mathbf{X} / \mathbf{Y}
$$

## Denominator

$Y=$ is the probability that (1) a woman randomly selected from a population is type $A B$, (2) a man randomly selected and unrelated to either mother or child is type CD, and (3) the woman's child, unrelated to the randomly selected man is BC .

## Standard Paternity Index

When mating is random, the probability that the untested alternative father will transmit a specific allele to his child is equal to the allele frequency in his race.

We can now look into how to actually calculate a Paternity Index

## Hypothetical DNA Example

 [1Numerator

| $\frac{\text { Person }}{\text { Mother }}$ |  |
| :---: | :---: |
| Child |  |
| AB |  |
| Alleged Father |  |
| BC |  |
|  |  |

In order to explain this evidence Calculate Probability that
a) Woman randomly selected from population is type AB
b) Man randomly selected from population is type CD , and
c) Their child is type BC

## Paternity Analysis Paternity Index Numerator



Probability $=2 p_{A} p_{B} \times 2 p_{C} p_{D} \times 0.5 \times 0.5$

## Hypothetical DNA Example <br> Second Hypothesis <br> Denominator

| $\frac{\text { Person }}{\text { Mother }}$ |  |
| :---: | :---: |
| Child |  |
| AB |  |
| Alleged Father |  |
| BC |  |
|  |  |

In order to explain this evidence Calculate Probability that
a) Woman randomly selected from population is type AB
b) An alternative man randomly selected from population is type CD, and
c) The woman's child, fathered by random man, is type BC

## Paternity Analysis Paternity Index Denominator

$$
2 p_{A} p_{B} \xlongequal{2 B}
$$

Probability $=2 p_{A} p_{B} \times 2 p_{C} p_{D} \times 0.5 \times p_{C}$

## Paternity Analysis Paternity Index

$$
\begin{aligned}
& \mathrm{PI}=\frac{2 p_{A} p_{B} \times 2 p_{C} p_{D} \times 0.5 \times 0.5}{2 p_{A} p_{B} \times 2 p_{C D} \times 0.5 \times p_{C}} \\
& \mathrm{PI}=\frac{0.5}{p_{C}}
\end{aligned}
$$

## Hypothetical DNA Example Probability Statements

| $\frac{\text { Person }}{\text { Mother }}$ |  |
| :---: | :---: |
| Child |  |
| AB |  |
| Alleged Father |  |
| BC |  |
|  |  |

One might say (Incorrectly)
a) Numerator is probability that tested man is the father, and
b) Denominator is probability that he is not the father

## Hypothetical DNA Example Probability Statement



A Correct statement is
a) Numerator is probability of observed genotypes, given the tested man is the father, and
b) Denominator is probability of observed genotypes, given a random man is the father.

## Incorrect Verbal Expression of the Paternity Index?

It is $(X / Y)$ times more likely the tested man was the true biological father than an untested random man was the father

## Correct Verbal Expression of the Paternity Index?

It is $(X / Y)$ times more likely to see the genetic results if the tested man was the true biological father than if an untested random man was the father

## or

There is $(X / Y)$ times more support for the genetic results if the tested man was the true biological father than if an untested random man was the father

## There are 15 possible

 combinations of genotypes for a paternity trio
# Paternity Index <br> M and C share one allele 

and AF is homozygous for the obligatory allele


C
AF can only pass C allele
Random Man has p chance of passing the C allele

$$
\mathrm{PI}=1 / \mathrm{p}
$$

## Paternity Analysis Paternity Index Numerator



Probability $=2 p_{A} p_{B} \times p_{C}^{2} \times 0.5 \times 1$

## Paternity Analysis Paternity Index Denominator



Probability $=2 p_{A} p_{B} \times p_{C}{ }^{2} \times 0.5 \times p_{C}$

# Paternity Analysis Paternity Index 

$$
\begin{aligned}
& \mathrm{PI}=\frac{2 p_{A} R_{B} \times p_{C}^{2} \times 0.5 \times 1}{2 p_{A} R_{B} \times R^{2} \times 0.5 \times p_{C}} \\
& \mathrm{PI}=\frac{1}{p_{C}}
\end{aligned}
$$

## Paternity Index

$M$ and $C$ share both alleles and
AF is heterozygous with one of the obligatory alleles


M has a 1 in 2 chance of passing A or B allele AF has a 1 in 2 chance of passing $B$ allele RM has $(\mathbf{p}+\mathrm{q})$ chance of passing the $\mathbf{A}$ or $\mathbf{B}$ alleles

$$
P I=0.5 /(p+q)
$$

## Paternity Analysis Paternity Index Numerator



Probability $=2 p_{A} p_{B} \times 2 p_{\mathrm{B}} \mathrm{p}_{\mathrm{C}} \times 0.5_{(\mathrm{mA})} \times 0.5_{(\mathrm{fB})}$

## Paternity Analysis Paternity Index Denominator


probability =
$2 p_{A} p_{B} \times 2 p_{B} p_{C} \times\left(0.5_{(\mathrm{mA})} \times p_{B}+0.5_{(\mathrm{mB})} \times p_{A}\right)$

Paternity Analysis Paternity Index

$$
\begin{aligned}
& \frac{2 p_{A} R_{B} \times 2 p_{B} R_{C} \times 0.5_{(\mathrm{mA})} \times 0.5_{(\mathrm{fB})}}{2 p_{A} R_{B} \times 2 p_{B} P_{C} \times\left(0.5_{(\mathrm{mB})} \times p_{A}+0.5_{(\mathrm{mA})} \times p_{B}\right)} \\
& \mathrm{Pl}=\frac{0.25}{0.5 p_{A}+0.5 p_{B}} \\
& \mathrm{PI}=\frac{0.5}{\mathrm{p}_{\mathrm{A}}+p_{B}}
\end{aligned}
$$

## Paternity Index

M and C share both alleles and AF is
heterozygous with both of the obligatory alleles

## Parents

Child


M has a 1 in 2 chance of passing A or $\mathbf{B}$ allele
AF has a 1 in 2 chance of passing $A$ or $B$ allele RM has ( $\mathbf{p}+\mathrm{q}$ ) chance of passing the A or B alleles

$$
\mathrm{PI}=1 /(p+q)
$$

## Paternity Analysis Paternity Index Numerator



Probability =
$2 \mathrm{p}_{\mathrm{A}} \mathrm{p}_{\mathrm{B}} \times 2 \mathrm{p}_{\mathrm{A}} \mathrm{P}_{\mathrm{B}} \times\left(0.5_{(\mathrm{mA})} \times 0.5_{(\mathrm{BB})}+0.5_{(\mathrm{mB})} \times 0.5_{(\mathrm{fA})}\right)$

## Paternity Analysis Paternity Index Denominator

$$
2 p_{A} p_{B} \cap A B+2 p_{A} p_{B}
$$

probability =
$2 p_{A} p_{B} \times 2 p_{A} p_{B} \times\left(0.5_{(\mathrm{mA})} \times p_{B}+0.5_{(\mathrm{mB})} \times p_{A}\right)$

## Paternity Analysis

## Paternity Index

$$
\begin{gathered}
\mathrm{PI}=\frac{2 p_{A} p_{B} \times 2 p_{B} \times\left(0.5_{(\mathrm{mA})} \times 0.5_{(\mathrm{BB})}+0.5_{(\mathrm{mB})} \times 0.5_{(\mathrm{AA})}\right)}{2 p_{A} p_{B} \times 2 p_{B} \times\left(0 . p_{(\mathrm{mB})} \times p_{A}+0.5_{(\mathrm{mA})} \times p_{B}\right)} \\
\mathrm{PI}=\frac{0.5}{0.5 p_{A}+0.5 p_{B}} \\
\mathrm{PI}=\frac{1}{p_{A}+p_{B}}
\end{gathered}
$$

## Paternity Index

 M and C share both alleles andAF is homozygous with one of the obligatory alleles


## C

M has a 1 in 2 chance of passing $A$ or $\mathbf{B}$ allele
AF can only pass the B allele
RM has $(p+q)$ chance of passing the $\mathbf{A}$ or $\mathbf{B}$ alleles

$$
\mathrm{PI}=1 /(\mathrm{p}+\mathrm{q})
$$

## Paternity Analysis Paternity Index Numerator



Probability $=2 \mathrm{p}_{\mathrm{A}} \mathrm{p}_{\mathrm{B}} \times \mathrm{p}_{\mathrm{B}}^{2} \times 0.5_{(\mathrm{mA})} \times 1_{(\mathrm{fB})}$

## Paternity Analysis Paternity Index Denominator


probability =
$2 p_{A} p_{B} \times p_{B}^{2} \times\left(0.5_{(\mathrm{mA})} \times p_{B}+0.5_{(\mathrm{mB})} \times p_{A}\right)$

## Paternity Analysis

 Paternity Index$$
\begin{aligned}
& \frac{2 p_{A} R_{B} \times p_{B}^{2} \times 0.55_{(\mathrm{mA})} \times 1_{(\mathrm{fB})}}{2 p_{A} p_{B} \times P_{B}^{2} \times\left(0.5_{(\mathrm{mB})} \times p_{A}+0.5_{(\mathrm{mA})} \times p_{B}\right)} \\
& \mathrm{PI}=\frac{0.5}{0.5 p_{A}+0.5 p_{B}} \\
& \mathrm{PI}=\frac{1}{p_{A}+p_{B}}
\end{aligned}
$$

## PI Formulas

Single locus, no null alleles, low mutation rate, codominance

| $\frac{\mathbf{M}}{\mathrm{A}}$ | C | $\frac{\mathrm{AF}}{\mathrm{A}}$ |  | Numerator |  | Denominator |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| AB |  | 0.5 |  | PI |  |  |
| A | AB | AB | 0.5 |  | a | $\mathbf{0 . 5 / a}$ |
| A | AB | BC | 0.5 |  | a | $\mathbf{0 . 5} / \mathrm{a}$ |
| AB | A | AB | 0.25 |  | 0.5 a | $\mathbf{0 . 5} / \mathrm{a}$ |
| AB | A | AC | 0.25 | 0.5 a | $\mathbf{0 . 5} / \mathrm{a}$ |  |
| BC | AB | AB | 0.25 |  | 0.5 a | $\mathbf{0 . 5} / \mathrm{a}$ |
| BC | AB | AC | 0.25 |  | 0.5 a | $\mathbf{0 . 5} / \mathrm{a}$ |
| BD | AB | AC | 0.25 |  | 0.5 a | $\mathbf{0 . 5} / \mathrm{a}$ |

## PI Formulas

Single locus, no null alleles, low mutation rate, codominance

| $\frac{\mathrm{M}}{\mathrm{A}}$ | $\frac{\mathrm{C}}{\mathrm{A}}$ | $\frac{\mathrm{AF}}{\mathrm{A}}$ | $\frac{\text { Numerator }}{}$ | 1 |  | Denominator |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |$\frac{\mathrm{PI}}{\mathrm{P} / \mathrm{a}}$

## PI Formulas

## Single locus, no null alleles, low mutation rate, codominance

$\frac{\mathrm{M}}{\mathrm{AB}} \quad \frac{\mathrm{C}}{\mathrm{AB}} \quad \frac{\mathrm{AF}}{\mathrm{AC}} \quad \frac{\text { Numerator }}{0.25} \quad \frac{\text { Denominator }}{0.5(\mathrm{a}+\mathrm{b})} \quad \underset{0.5 /(\mathrm{a}+\mathrm{b})}{\mathrm{PI}}$

## PI Formulas

## Single locus, no null alleles, low mutation rate, codominance

$\begin{array}{ll}\underline{\mathbf{M}} & \underline{\mathrm{C}} \\ \mathrm{AB} & \mathrm{AB} \\ \mathrm{AB} & \mathrm{AB}\end{array}$

| Numer |
| ---: |
| 0.5 |
| 0.5 |

Denominator


## Combined Paternity Index

- When multiple genetic systems are tested, a PI is calculated for each system.
- This value is referred to as a System PI.
- If the genetic systems are inherited independently, the Combined Paternity Index (CPI) is the product of the System PI's


## Combined Paternity Index

What "is" the CPI?

- The CPI is a measure of the strength of the genetic evidence.
- It indicates whether the evidence fits better with the hypothesis that the man is the father or with the hypothesis that someone else is the father.


## Combined Paternity Index

- The theoretical range for the CPI is from 0 to infinity
- A CPI of 1 means the genetic tests provides no information
- A CPI less than 1; the genetic evidence is more consistent with non-paternity than paternity.
- A CPI greater than 1; the genetic evidence supports the assertion that the tested man is the father.


## Probability of Paternity

- The probability of paternity is a measure of the strengths of one's belief in the hypothesis that the tested man is the father.
- The correct probability must be based on all of the evidence in the case.
- The non-genetic evidence comes from the testimony of the mother, tested man, and other witnesses.
- The genetic evidence comes from the DNA paternity test.


## Probability of Paternity

- The probability of paternity (W) is based


## Probability of Paternity

- The prior probability of paternity is the strength of one's belief that the tested man is the father based only on the non-genetic evidence.


## Probability of Paternity

$$
\text { Probability of Paternity }(\mathrm{W})=\frac{\mathrm{CPI} \times \mathrm{P}}{[\mathrm{CPI} \times \mathrm{P}+(1-\mathrm{P})]}
$$

$\mathrm{P}=$ Prior Probability; it is a number greater than 0 and less than or equal to 1. In many criminal proceedings the Probability of Paternity is not admissible. In criminal cases, the accused is presumed innocent until proven guilty. Therefore, the defense would argue that the Prior Probability should be 0. You cannot calculate a posterior Probability of Paternity with a Prior Probability of 0.

## Probability of Paternity

- In the United States, the court system has made the assumption that the prior probability is equal to 0.5 . The argument that is presented is that the tested man is either the true father or he is not. In the absence of any knowledge about which was the case, it is reasonable to give these two possibilities equal prior probabilities.


## Probability of Paternity

With a prior probability of 0.5 , the
Probability of Paternity (W) =

## CPI x 0.5

$$
\text { [CPI x } 0.5+(1-0.5)]
$$

$$
=\frac{\mathrm{CPI}}{\mathrm{CPI}+1}
$$

## Posterior Odds in Favor of Paternity

$$
\begin{gathered}
\text { Posterior Odds = CPI x Prior Odds } \\
\text { Prior Odds }=\mathrm{P} /(1-\mathrm{P})
\end{gathered}
$$

Posterior Odds in Favor of Paternity $=$
CPI x [P / (1-P)]

If the prior probability of paternity is 0.7 , then the prior odds favoring paternity is 7 to 3 . If a paternity test is done and the CPI is 10,000 , then the Posterior Odds in Favor of Paternity $=$

$$
10,000 \times(0.7 / 0.3)=23,333
$$

Posterior Odds in Favor of Paternity =23,333 to 1

## Probability of Exclusion

- The probability of exclusion (PE) is defined as the probability of excluding a random individual from the population given the alleles of the child and the mother.
- The genetic information of the tested man is not considered in the determination of the probability of exclusion


## Probability of Exclusion

- The probability of exclusion (PE) is equal to the frequency of all men in the population who do not contain an allele that matches the obligate paternal allele of the child.


## Probability of Exclusion

$$
\mathrm{PE}=1-\left(\mathrm{a}^{2}+2 \mathrm{ab}\right)
$$

a = frequency of the allele the child inherited from the biological father (obligate paternal allele). The frequency of the obligate allele is determined for each of the major racial groups, and the most common frequency is used in the calculation.

## Probability of Exclusion

$\left(\mathrm{a}^{2}+2 \mathrm{ab}\right)=$ Probability of Inclusion
Probability of Inclusion is equal to the frequency of all men in the population who contain an allele that matches the obligate paternal allele of the child.

$$
\text { PE = } 1 \text { - Probability of Inclusion }
$$

## Probability of Exclusion

$$
\mathrm{PE}=1-\left(\mathrm{a}^{2}+2 \mathrm{ab}\right)
$$

b = sum of the frequency of all alleles other than the obligate paternal allele.

$$
b=(1-a)
$$

$$
\begin{aligned}
& \mathrm{PE}=1-\left[\mathbf{a}^{2}+2 \mathbf{a}(1-\mathbf{a})\right] \\
& \mathrm{PE}=1-\left[\mathbf{a}^{2}+2 \mathbf{a}-2 \mathbf{a}^{2}\right] \\
& \mathrm{PE}=1-\left[2 \mathbf{a}-\mathbf{a}^{2}\right] \\
& \mathrm{PE}= 1-2 \mathbf{a}+\mathbf{a}^{2} \\
& \mathrm{PE}=(1-\mathbf{a})^{2}
\end{aligned}
$$

## Probability of Exclusion

If the Mother and Child are both phenotype AB , men who cannot be excluded are those who could transmit either an A or B allele (or both). In this case the:

$$
\mathrm{PE}=[1-(\mathrm{a}+\mathrm{b})]^{2}
$$

## Combined Probability of Exclusion

The individual Probability of Exclusion is calculated for each of the genetic systems (loci) analyzed. The overall Probability of Excluding (CPE) a falsely accused man in a given case equals:
$1-\left[\left(1-\mathrm{PE}_{1}\right) \times\left(1-\mathrm{PE}_{2}\right) \times\left(1-\mathrm{PE}_{3}\right) \ldots \times\left(1-\mathrm{PE}_{N}\right)\right]$

## Paternity Trio P-54534



## Paternity Trio P-54534



$54534 \mathrm{C} 1 \ldots$ pl8/21/01 4 Green $54534 \mathrm{C} 1-10 / 16-\mathrm{PP} 1 \epsilon$


54534 AF...pl8/21/01 5 Green 54534 AF-10/16-PP16


## Paternity Trio P-54534



54534 C1...pl8/21/01 4 Yellow 54534 C1-10/16-PP16


## Paternity Trio P-54534

## M C AF Allele Frequency

D3S1358
(3p)
$\begin{array}{lll}14 & 15 p & 15 \\ 17 & 17 m & 16\end{array}$
HUMvWA31
(12p13.3-p13.2)
16
17
17m
18
18p 20
$18=0.2219$

FGA
(4q28)
$\begin{array}{lll}22 & 22 & 22 \\ & & 24\end{array}$
$15=0.2463$
$22=0.1888$

## Paternity Trio P-54534

## M <br> C AF <br> PI Formula

D3S1358
(3p)
14
17 17m 16
HUMvWA31
(12p13.3-p13.2)
16
17
17m
18
18p 20
0.5/a

FGA
(4q28)
22
22
22
24
0.5/a
0.5/a
0.5/a

## Paternity Trio P-54534

## M C AF Paternity Index

D3S1358
(3p)
$\begin{array}{lll}14 & 15 p & 15 \\ 17 & 17 m & 16\end{array}$
HUMvWA31
(12p13.3-p13.2)
16
17
17m
18
18p 20
2.25

FGA
(4q28)
$22 \quad 22$
22
24
2.03
2.65

## Paternity Trio P-54534

## C AF <br> PE Formula

D3S1358
(3p)
$\begin{array}{lll}14 & 15 p & 15 \\ 17 & 17 m & 16\end{array}$
HUMvWA31
(12p13.3-p13.2)
16
17
18p
18

FGA
(4q28)
$22 \quad 22$
22
24
$(1-a)^{2}$
$(1-a)^{2}$

## Paternity Trio P-54534

## C AF <br> PE

D3S1358
(3p)
$14 \quad 15 \mathrm{p} \quad 15$
17 17m 16
HUMvWA31
(12p13.3-p13.2)
16
17
17m
18
18p 20
0.6054

FGA
(4q28)
22
22
22
24
0.5680
0.6580

## Paternity Trio P-54534

D8S1179
(8)

D21S11
(21q11.2-q21)
D18S51
(18q21.3)

12 12m 15
14 16p 16
$28 \quad 28 \mathrm{~m} \quad 28$
$30 \quad 32 p \quad 32$
$15 \quad 13 p \quad 13$
19 15m 18

$$
16=0.0128
$$

$32=0.0153$
$13=0.1224$

## Paternity Trio P-54534

D8S1179
(8)

D21S11
(21q11.2-q21)
D18S51
(18q21.3)

12 12m 15
14 16p 16
$28 \quad 28 \mathrm{~m} \quad 28$
3032 p 32
15 13p 13
19 15m 18

PI Formula
0.5/a
0.5/a
0.5/a

## Paternity Trio P-54534

## M C AF Paternity Index

D8S1179
(8)

D21S11
(21q11.2-q21)
D18S51
(18q21.3)

12 12m 15
14 16p 16
$28 \quad 28 m \quad 28$
$30 \quad 32 \mathrm{p} 32$
$15 \quad 13 p \quad 13$
19 15m 18
39.06
32.68
4.08

## Paternity Trio P-54534

|  | M | C | AF | PE Formula |
| :--- | :--- | :--- | :--- | :--- |
| D8S1179 | 12 | $12 m$ | 15 |  |
| $(8)$ 14 $16 p$ 16 | $(1-a)^{2}$ |  |  |  |
| D21S11 | 28 | $28 m$ | 28 | $(1-a)^{2}$ |
| $(21 q 11.2-q 21)$ | 30 | $32 p$ | 32 |  |
| D18S51 | 15 | $13 p$ | 13 | $(1-a)^{2}$ |
| $(18 q 21.3)$ | 19 | $15 m$ | 18 |  |

## Paternity Trio P-54534

## M <br> C AF <br> PE

D8S1179
(8)
$\begin{array}{lll}12 & 12 m & 15 \\ 14 & 16 p & 16\end{array}$
$\begin{array}{llll}\text { D21S11 } & 28 & 28 m & 28 \\ (21 q 11.2-q 21) & 30 & 32 p & 32\end{array}$
D18S51
(18q21.3)
15
19
13p
13
15m 18
0.7701

## Paternity Trio P-54534

| D5S818 | 12 | 12 | 8 | $12=0.3538$ |
| :--- | :---: | :---: | ---: | ---: |
| $(5 q 21-q 31)$ |  |  | 12 |  |
| D13S317 | 12 | 12 | 13 | $12=0.3087$ |
| $(13 q 22-q 31)$ | 13 | 13 |  | $13=0.1097$ |
| D7S820 | 7 | $8 m$ | 10 | $10=0.2906$ |
| $(7 q)$ | 8 | $10 p$ | 11 |  |

## Paternity Trio P-54534

M C AF
$12 \quad 12$
(5q21-q31)
D13S317
(13q22-q31)
D7S820
(7q)
$12 \quad 12 \quad 13$
1313
8
12

PI Formula

| D5S818 | 12 | 12 | 8 | $0.5 / a$ |
| :--- | ---: | ---: | ---: | :---: |
| (5q21-q31) |  |  | 12 |  |
| D13S317 | 12 | 12 | 13 | $1 /(a+b)$ |
| (13q22-q31) | 13 | 13 |  |  |
| D7S820 | 7 | $8 m$ | 10 | $0.5 / a$ |
| (7q) | 8 | $10 p$ | 11 |  |

## Paternity Trio P-54534

## M C AF Paternity Index

| D5S818 | 12 | 12 | 8 | 1.41 |
| :--- | ---: | ---: | ---: | ---: |
| (5q21-q31) |  |  | 12 |  |
| D13S317 | 12 | 12 | 13 | 2.39 |
| (13q22-q31) | 13 | 13 |  |  |
| D7S820 | 7 | $8 m$ | 10 | 1.72 |
| (7q) | 8 | $10 p$ | 11 |  |

## Paternity Trio P-54534

D5S818
(5q21-q31)
D13S317
(13q22-q31)
D7S820
(7q)

12
1313
$12 \quad 12$
8
12
C AF
$12 \quad 13$
$\begin{array}{lll}7 & 8 m & 10 \\ 8 & 10 p & 11\end{array}$
$[1-(a+b)]^{2}$
PE Formula

$$
(1-a)^{2}
$$

$(1-a)^{2}$

## Paternity Trio P-54534

D5S818
(5q21-q31)
$12 \quad 12$
8
12
0.4175

D13S317
(13q22-q31)
$\begin{array}{ll}12 & 12 \\ 13 & 13\end{array}$
D7S820
(7q)
$\begin{array}{lll}7 & 8 m & 10 \\ 8 & 10 p & 11\end{array}$
0.3382
0.5032

## Paternity Trio P-54534

|  | M | C | AF | Allele Frequency |
| :--- | ---: | ---: | ---: | ---: |
| HUMCSF1PO | 8 | 8 | 12 | $8=0.0123$ |
| (5q33.3-q34) | 12 | 12 |  | $12=0.3251$ |
| HUMTPOX | 10 | $9 p$ | 9 | $9=0.1232$ |
| (2p23-2pter) | 11 | 10 m |  |  |
| HUMTH01 | 7 | 9 | 8 | $9=0.1650$ |
| (11p15.5) | 9 |  | 9 |  |
| D16S539 | 12 | 13 | 9 | $13=0.1634$ |
| (16p24 - p25) | 13 |  | 13 |  |

## Paternity Trio P-54534

## M C AF <br> PI Formula

| HUMCSF1PO <br> (5q33.3-q34) | 8 | 8 | 12 | 1/(a+b) |
| :--- | ---: | ---: | :---: | :---: |
| HUMTPOX | 12 |  |  |  |
| 10 | $9 p$ | 9 | $1 / \mathrm{a}$ |  |
| (2p23-2pter) | 11 | 10 m |  |  |
| HUMTH01 | 7 | 9 | 8 |  |
| (11p15.5) | 9 |  | 9 | $0.5 / \mathrm{a}$ |
| D16S539 | 12 | 13 | 9 |  |
| (16p24-p25) | 13 |  | 13 | $0.5 / \mathrm{a}$ |

## Paternity Trio P-54534

| HUMCSF1PO | 8 | 8 | 12 | 2.96 |
| :--- | ---: | :---: | :---: | :---: |
| (5q33.3-q34) | 12 | 12 |  |  |
| HUMTPOX | 10 | $9 p$ | 9 | 8.12 |
| (2p23-2pter) | 11 | 10 m |  |  |
| HUMTH01 | 7 | 9 | 8 | 3.03 |
| (11p15.5) | 9 |  | 9 |  |
| D16S539 | 12 | 13 | 9 | 3.06 |
| (16p24-p25) | 13 |  | 13 |  |

## Paternity Trio P-54534

M C AF PE Formula

| HUMCSF1PO <br> (5q33.3-q34) | 12 | 8 | 12 | $[1-(\mathrm{a}+\mathrm{b})]^{2}$ |
| :--- | ---: | ---: | :---: | :---: |
| HUMTPOX | 10 | $9 p$ | 9 |  |
| (2p23-2pter) | 11 | 10 m |  | $(1-\mathrm{a})^{2}$ |
| HUMTH01 | 7 | 9 | 8 |  |
| (11p15.5) | 9 |  | 9 | $(1-\mathrm{a})^{2}$ |
| D16S539 | 12 | 13 | 9 |  |
| (16p24-p25) | 13 |  | 13 | $(1-\mathrm{a})^{2}$ |

## Paternity Trio P-54534

## M <br> C AF <br> PE

HUMCSF1PO
(5q33.3-q34)
$\begin{array}{rr}8 & 8 \\ 12 & 12\end{array}$
HUMTPOX
(2p23-2pter)
10
9p
9
11 10m
12
0.4390

HUMTH01
(11p15.5)
7
9
8
9
12
13
13
9
13
0.6999

## Paternity Trio P-54534 13 Core CODIS Loci

Combined Paternity Index
Probability of Paternity
Probability of Exclusion

81,424,694
99.99999\%
99.99999\%

# Popstats <br> <br> Parentage Calculations 

 <br> <br> Parentage Calculations}

## PopStats can only do basic parentage statistics!

Hili Popstats 5. 3 - [Parentage Target Profile]


## Popstats Can only Calculate with a Complete Trio (Mother, Child, Alleged Father)

Popstats Help

| File Edit | Einakmiart Qpitions Help |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Eiornternts | Serarction | E日・モロ | Erirat | $\leq<$ | $\geq>$ | 奋lonss．ar．r | E－rit |  |
| 1－1－2 |  |  |  |  |  |  |  |  |






Ciefieult bin methard
FGF：LaEi










Gロッfictemに家 Lirnits

Interirn ceiliric Frimbiale



Fis．rerticie cies


응ㅋㅋㄹ
으오은
－킄큰
果果家



## Parentage Case




 Frobability of Pirenticge (M).

The Parentage Index is a likelihood ratio based on two conditional probabilites: the probability of parentage given the the alleged parentis the biological parent and the probability that the alleged parentis not the biological parent. The general formulais as tollows:

$$
\mathrm{PI}=\frac{\text { Probability of the genetic observations conditional on parentage }}{\text { Probability of the genetic observations conditional on ion - parentage }}
$$

The exact formula of F i in temms of band/allele occurrence frequencies depends on the obligate parental band/alilele and the homozygosity of the aileged parient.

## Parenhage Case








## Pareniage Case

 The DNA profile ofthe elleged parentis not considered in calaluating the PE. The Frobability of Exdusion is equal to the tequenency of til the people in the population who do not contiain nn allele thatmathes the obliggte patemal allele of the child.

Ifthe phenotypes ofthe known parent, crild, and alleged parent do not match at one locus, then "inconclusive"'is declared tor both the locus and the entire parentage test. Ifthe phenotypes of the known parent crild, and alleged parent do not match a tho or more loci, then "no match' is declared tor the entrive parertage test. The tollowing table lists all the "matched" cases and their comesponding tommulae tof Fl and PE.

Where
$\hat{p}_{i}$ is defined to be $\hat{p}_{i}=\max \left\{p_{\min }, p_{i}\right\}$
$p$ and $q$ is the band/allele occurrence frequency of the child
$p_{\text {min }}$ is the user-configured minimum frequency
$E$ is the facto to be used as a consenvalive correction in Plion the RFLP homozygotes in the alleged parertis profile.
The default value tor $E$ is 0.5 .

## Facenime case



$$
\begin{aligned}
& P I=\prod_{\text {wid }}\left(P I_{\text {wes }}\right) \\
& \left.P E=1-\prod_{\mathrm{wi}}^{\left[1-\left(P \mathrm{P}_{\mathrm{max}}\right)\right]}\right] \\
& W=\frac{(\mathrm{II}) \cdot p_{\mathrm{pin}}}{(\mathrm{PI}) \cdot p_{\mathrm{pir}}\left(1 \mid-p_{\mathrm{pir}}\right)}
\end{aligned}
$$

T! File Edit Profile Gase Type Gonfiguration Window Help


Dilit Popstats 5.3-[Parentage Statistics]
制虽 File Edit Profile Gase Type Gonfiguration Window Help


| CAU |  | BLK |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Locus | PEl\% | Fl | W[\%] | Match? |
| D351358 | $5.6806 \mathrm{E}+01$ | 2 | $6.6997 \mathrm{E}+01$ | Yes |
| WW/A | 6.0544E+01 | 2 | $6.926 .2 \mathrm{E}+01$ | Yes |
| FGA | 6.5805E+01 | 3 | $7.2590 \mathrm{E}+01$ | Yes |
| D8961179 | $9.7456 \mathrm{E}+01$ | 39 | $9.7504 \mathrm{E}+01$ | 'res |
| D21511 | 9.696:3E+01 | 33 | $9.7031 \mathrm{E}+01$ | Yes |
| D18551 | $7.7001 \mathrm{E}+01$ | 4 | $8.0321 \mathrm{E}+01$ | Yes |
| D55818 | $4.1745 \mathrm{E}+01$ | 1 | $5.8555 \mathrm{E}+01$ | 'res |
| D136317 | $3.3826 \mathrm{E}+01$ | 2 | $7.0502 \mathrm{E}+01$ | Yes |
| D75820 | $5.0325 \mathrm{E}+01$ | 2 | $6.3243 \mathrm{E}+01$ | Yes |
| CSF1PG | $4.3904 \mathrm{E}+01$ | 3 | $7.4772 \mathrm{E}+01$ | Yes |
| TPIX | 7.6878E+01 | 8 | $8.9031 \mathrm{E}+01$ | Yes |
| TH01 | $6.9722 \mathrm{E}+01$ | 3 | $7.5188 \mathrm{E}+01$ | Yes |
| D165539 | E.9990E + 01 | 3 | $7.5369 \mathrm{E}+01$ | 'res |
| Total | $1.000 \mathrm{E}+02$ | 81.8000000 | $1.000 \mathrm{E}+02$ | Yes |

## dilit Popstats 5.3-[Parentage Statistics]

嗦 File Edit Profile Gase Type Configuration Window Help
参

| [4. $\square^{\text {a }}$ |  | BLE |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Locus | PE[\%] | FI | W[\%] | Match? |
| D351358 | $5.0339 \mathrm{E}+01$ | 2 | $6.3251 \mathrm{E}+01$ | 'es |
| WW/A | $7.4632 \mathrm{E}+01$ | 4 | 7.8604E+01 | Yes |
| FGiA | E.0062E+01 | 2 | 6.896EE+01 | Yes |
| D851179 | $9.1317 \mathrm{E}+01$ | 11 | $9.1844 \mathrm{E}+01$ | Yes |
| D21511 | $9.7220 \mathrm{E}+01$ | 36 | $9.7276 \mathrm{E}+101$ | Yes |
| D18551 | $8.9189 \mathrm{E}+01$ | 9 | $8.9993 \mathrm{E}+01$ | Yes |
| D55818 | $4.1525 \mathrm{E}+01$ | 1 | $5.8439 \mathrm{E}+01$ | Yes |
| D136317 | $1.5296 \mathrm{E}+01$ | 2 | 6.2154E+01 | Yes |
| D75820 | $4.5725 \mathrm{E}+01$ | 2 | 6. $01694 \mathrm{E}+01$ | Yes |
| CSF1PO | $3.7736 \mathrm{E}+01$ | 3 | 7.216EE+01 | Yes |
| TPOX | 6.6945E + 01 | 6 | $8.4617 \mathrm{E}+01$ | Yes |
| TH01 | $7.3068 \mathrm{E}+01$ | 3 | 7.7495E+01 | Yes |
| D165539 | 6.9706E+01 | 3 | $7.5177 \mathrm{E}+01$ | Yes |
| Total | 1.000E +02 | 26.950 .000 | 1.000E +02 | Yes |

## Wilitiop Popstats 5.3 - [Parentage Statistics]

棹草 File Edit Profile Gase Type Configuration Window Help


| [4] |  | ELK |  |  | SEH |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Locus | $\mathrm{FE}[8]$ | FI | W/E] | Match? |  |
| 0351358 | $4.1809 \mathrm{E}+01$ | 1 | $5.8589 \mathrm{E}+01$ | Yes |  |
| W\% | 6.6016E+01 | 3 | $7.2727 \mathrm{E}+011$ | Yes |  |
| FGA | $7.2386 \mathrm{E}+01$ | 3 | $7.7018 \mathrm{E}+01$ | Yes |  |
| 0851179 | $9.4829 \mathrm{E}+01$ | 19 | $9.5021 \mathrm{E}+01$ | Yes |  |
| D21511 | $9.7397 \mathrm{E}+01$ | 38 | $9.7447 \mathrm{E}+011$ | Yes |  |
| D18551 | $7.7828 \mathrm{E}+01$ | 4 | $8.0932 \mathrm{E}+01$ | Yes |  |
| D55818 | 4.6690E+01 | 2 | $6.1222 \mathrm{E}+01$ | Yes |  |
| 0135317 | $4.3891 \mathrm{E}+01$ | 3 | $7.476 \mathrm{EE}+011$ | Yes |  |
| 075820 | $5.3773 \mathrm{E}+01$ | 2 | $6.5215 \mathrm{E}+01$ | Yes |  |
| CSF1P0 | $4.0107 \mathrm{E}+01$ | 3 | $7.3169 \mathrm{E}+01$ | Yes |  |
| TPIX | 8.4034E+ 01 | 12 | $9.2311 \mathrm{E}+01$ | Yes |  |
| TH01 | 6. $6.357 \mathrm{E}+01$ | 3 | $7.29505+01$ | Yes |  |
| 0165539 | $7.0141 \mathrm{E}+01$ | 3 | $7.5472 \mathrm{E}+01$ | Yes |  |
| Total | $1.000 \mathrm{E}+02$ | 93,130,000 | 1.00]E+ 0102 | Yes |  |

Fililil Popstats 5.3 - [Parentage Statistics]
暲 File Edit Frofile Case Type Configuration Window Help


| [4] |  | BLK |  |  | SEH | SWH |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Locus | FE[ ${ }^{\text {\% }}$ ) | F\| | W/(\%) | Match? |  |  |
| 0351358 | $3.2971 E+011$ | 1 | $5.4007 \mathrm{E}+01$ | Yes |  |  |
| W/4 | 6.4867E +01 | 3 | 7.1984E+01 | Yes |  |  |
| FGa | 6.7684E+01 | 3 | 7.3023E+01 | Yes |  |  |
| 0851179 | $9.5141 \mathrm{E}+01$ | 20 | $9.5311 \mathrm{E}+01$ | Yes |  |  |
| 021511 | $97555 E+01$ | 41 | $9.7599 E+01$ | Yes |  |  |
| D18951 | 6.8890E+01 | 3 | 7.4627E+01 | Yes |  |  |
| 055818 | $5.0325 E+01$ | 2 | 6.3243E+01 | Yes |  |  |
| 0135317 | 4.1641E+01 | 3 | 7.3617E+01 | Yes |  |  |
| 075820 | $4.8136 E+01$ | 2 | $6.2019 \mathrm{P}+01$ | Yes |  |  |
| CSF1PI | $3.5486 E+01$ | 2 | 7.1210E+01 | Yes |  |  |
| TPDX | $9.3412 \mathrm{E}+01$ | 30 | 9.6759E+01 | Yes |  |  |
| TH01 | 8.0479E+01 | 5 | $8.2932 \mathrm{C}+01$ | Yes |  |  |
| 0165539 | 8.0389E+01 | 5 | $8.2864 E+01$ | Yes |  |  |
| Total | 1.000E 102 | 284,100,000 | 1.000E+ 102 | Yes |  |  |

September 22, 2003
Popstats 5.3
Page 1
Parentage Calculations Part 1
Fixed Bin

op = obligate parentage allele

## Popstats Help <br> Equation Numbers

Parentage Case Coser Cesez Cese 3 Cese 4 Cese 5 Ceser Ceser

## Equation Number

## 1

## Parentage - Case 1

For RFLP/WITRE1an:

$$
\mathrm{PI}_{\mathrm{loax}}=\frac{E}{\hat{p}}, \mathrm{PE}_{\mathrm{box}}=(1-\hat{p})^{2}
$$

For FCR 1oci:

$$
\mathrm{PI}_{\text {loug }}=\frac{1}{p}=\mathrm{PE}_{\mathrm{ban}}=(1-\bar{p})^{2}
$$

## TPOX

$$
\begin{array}{lcc}
\mathrm{M} & \mathrm{C} & \mathrm{AF} \\
10 & 9 & 9 \\
11 & 10 \text { op } &
\end{array}
$$

## Equation Number

 2
## Parentage - Case 2

$$
\mathrm{PI}_{\mathrm{locg}}=\frac{0.5}{\hat{p}}, \mathrm{PE}_{\mathrm{laxs}}=(1-\hat{p})^{2}
$$

| D3S1358 |  | FGA |  |  | D18S51 |  |  |  | TH01 |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| M | C | AF |
| 14 | 15 | op | 9 | 22 | 22 op | 22 | 15 | 13 op | 13 | 7 | 9 op |
| 17 | 17 |  |  |  | 24 | 19 | 15 | 18 | 9 |  | 9 |

## Equation Number 3

## Parentage - Case 3

For VINTRRFLP 1omi:

$$
\mathrm{PI}_{\mathrm{loax}}=\frac{E}{q}, \mathrm{PE}_{\mathrm{loax}}=(1-q)^{2}
$$

For PCR 1oci:

$$
\mathrm{PI}_{\mathrm{bax}}=\frac{1}{q}, \mathrm{PE}_{\mathrm{loax}}=(1-q)^{2}
$$

M C AF
M C AF
M C AF
$\begin{array}{lllllll}\mathrm{P} & \mathrm{P} & \mathrm{Q} & \mathrm{P} & \mathrm{Q} \text { op } \mathrm{Q} & \mathrm{Q} & \mathrm{Q}_{\text {op }} \mathrm{Q}\end{array}$
R Qop
Q

## Equation Number <br> 4

## Parentage - Case 4 <br> $$
\mathrm{PI}_{\mathrm{locx}}=\frac{0.5}{-}, \mathrm{PE}_{\mathrm{loxs}}=(1-q)^{2}
$$

VWA
M C AF
$\begin{array}{lll}16 & 17 & 18\end{array}$
$17 \quad 18$ op 20

D8S1179
M C AF
$\begin{array}{lll}12 & 12 & 15\end{array}$
$14 \quad 16$ op 16

D21S11
$\begin{array}{cccccr}\mathrm{M} & \mathrm{C} & \mathrm{AF} & \mathrm{M} & \mathrm{C} & \text { AF } \\ 28 & 28 & 28 & 7 & 8 & 10 \\ 30 & 32 \text { op } & 32 & 8 & 10 & \text { op }\end{array} 11$

D7S820

| M | C | AF |
| :--- | :--- | :--- |
| 7 | 8 | 10 |
| 8 | 10 | 11 |

## Equation Number

## 5

## Parentage - Case 5

$$
\mathrm{PI}_{\mathrm{bus}}=\frac{1}{p+q}, \mathrm{PE}_{\mathrm{bow}}=[1-(p+q)]^{2}
$$

| M | C | AF | M | C | AF | M | C | AF |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| P | P | $\mathbf{P}$ | or | P | P | $\mathbf{Q}$ | or | P | P |
| Q | Q |  |  | Q | Q |  |  | P | Q |
| Q |  |  |  |  |  |  |  |  |  |

## Equation Number

## 6

## Parentage - Case 6

$$
\begin{aligned}
& \text { For VNTR/RFLP 1oci: } \\
& \mathrm{PI}_{\text {bas }}=\frac{E}{p+q}, \mathrm{PE}_{\text {bas }}=[1-(p+q)]^{2} \\
& \text { For PCR loci: } \\
& \operatorname{PI}_{\text {bax }}=\frac{1}{p+q}, \mathrm{PE}_{\text {bas }}=[1-(p+q)]^{2}
\end{aligned}
$$

CSF1PO

$$
\begin{array}{ccc}
\mathrm{M} & \mathrm{C} & \mathrm{AF} \\
8 & 8_{\text {op }} & 12 \\
12 & 12_{\text {op }} &
\end{array}
$$

## Equation Number

7

## Parenlage - Case 7

$$
\mathbb{P}_{\operatorname{lnx}}=\frac{0.5}{p+q}, \mathbb{P}_{\operatorname{lng}}[1-(p+q)]^{2}
$$

| M | C | AF |  | M | C | AF |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| P | P | P | or | P | P | Q |
| Q | Q | S |  | Q | Q | S |

September 22, 2003
Popstats 5.3
Page 1
Parentage Calculations Part 2
Fixed Bin

| Database: | $C: \backslash C O D I S I I \backslash C O D I S \backslash P O P D A T A \backslash F B I \backslash S T R$ |  |  |  |
| :--- | :--- | :--- | :--- | :--- |
| User Name: | eisenber |  |  |  |
| Boundaries: | 0 |  | 2000 | 10000 |
| Windows: | $>$ | 0.025 | $<$ | 0.025 |$\ll 0.080$

Population Group: CAU

| Locus | Probability of Exclusion | Parentage <br> Index | Probability <br> of Parentage | Match? |
| :---: | :---: | :---: | :---: | :---: |
| D3S1358 | $5.6806 \mathrm{E}+01$ \% | 2.0300E+00 | $6.6997 \mathrm{E}+01$ \% | Yes |
| VWA | $6.0544 \mathrm{E}+01$ \& | $2.2533 \mathrm{E}+00$ | $6.9262 \mathrm{E}+01$ \% | Yes |
| FGA | $6.5805 \mathrm{E}+01$ \% | $2.6483 \mathrm{E}+00$ | $7.2590 \mathrm{E}+01$ \% | Yes |
| D8S1179 | $9.7456 \mathrm{E}+01$ \% | $3.9062 \mathrm{E}+01$ | $9.7504 \mathrm{E}+01$ \% | Yes |
| D21S11 | $9.6963 \mathrm{E}+01$ \% | $3.2680 \mathrm{E}+01$ | $9.7031 \mathrm{E}+01$ \% | Yes |
| D18551 | $7.7001 \mathrm{E}+01$ \% | 4.0816E+00 | $8.0321 \mathrm{E}+01$ \% | Yes |
| D5S818 | $4.1745 \mathrm{E}+01$ \% | 1. $4128 \mathrm{E}+00$ | $5.8555 \mathrm{E}+01$ \% | Yes |
| D135317 | $3.3826 \mathrm{E}+01$ \% | $2.3901 \mathrm{E}+00$ | $7.0502 \mathrm{E}+01$ \% | Yes |
| D7S820 | $5.0325 \mathrm{E}+01$ \% | 1.7206E+00 | $6.3243 \mathrm{E}+01$ \% | Yes |
| CSFlPO | $4.3904 \mathrm{E}+01$ \% | $2.9638 \mathrm{E}+00$ | $7.4772 \mathrm{E}+01$ \% | Yes |
| TPOX | $7.6878 \mathrm{E}+01$ \% | $8.1169 \mathrm{E}+00$ | $8.9031 \mathrm{E}+01$ \% | Yes |
| TH01 | $6.9722 \mathrm{E}+01$ \% | $3.0303 \mathrm{E}+00$ | $7.5188 \mathrm{E}+01$ \% | Yes |
| D16S539 | $6.9990 \mathrm{E}+01$ \% | $3.0600 \mathrm{E}+00$ | $7.5369 \mathrm{E}+01$ \% | Yes |
| Total | $1.000 \mathrm{E}+02$ \% | 8.180E+07 | $1.000 \mathrm{E}+02 \mathrm{8}$ | Yes |

Population Grow: BLK

| Locus | Probahility of Exclusion | Parentage <br> Index | Probability of Parentage | Match? |
| :---: | :---: | :---: | :---: | :---: |
| 1311358 | $5.0398+018$ | $1.7212 \mathrm{E}+00$ | $6.32518+018$ | Yes |
| TWd | $7.4632 \mathrm{E}+018$ | $3.6738 \mathrm{E}+10$ | $7.86048+018$ | Yes |
| Fgh | $6.0062 \mathrm{C}+018$ | $2.22226+000$ | $6.89668+018$ | Yes |
| 1881179 | $9.1317 \mathrm{C}+018$ | 1.1261E+01 | $9.1844 \mathrm{C}+18$ | Yes |
| D21s11 | $9.72006+018$ | $3.57145+01$ | $9.7276 \mathrm{E}+018$ | Yes |
| D18851 | $8.91898+018$ | $8.99288+00$ | $8.99938+018$ | Yes |
| D5S818 | $4.15256+018$ | 1.4061E+00 | $5.84398+018$ | Yes |
| 1135317 | $1.5296+1018$ | 1.6423E+100 | $6.21548+018$ | Yes |
| D79820 | $4.57258+018$ | 1.5442E+00 | $6.0694 \mathrm{C}+018$ | Yes |
| CSFIPO | $3.7736 \mathrm{C}+018$ | $2.59278+100$ | $7.21668+018$ | Yes |
| TPOX | $6.69458+018$ | $5.5006 \mathrm{E}+100$ | $8.46178+018$ | Yes |
| THOL | $7.3068 \mathrm{C}+1 \mathrm{18}$ | $3.4435 E+00$ | $7.74956+018$ | Yes |
| 1168539 | $6.97068+018$ | $3.02856+100$ | $7.51778+018$ | Yes |
| Total | . $0000+028$ | $2.695 E+07$ | 1.0000+02 | Yes |


| Locus | Probability of Exclusion | Parentage <br> Index | Probability <br> of Parentage | Match? |
| :---: | :---: | :---: | :---: | :---: |
| D381358 | 4.1809E+01 | 1.4148E+00 | $5.8589 \mathrm{C}+018$ | Yes |
| TWA | $6.6016 E+018$ | $2.6667 \mathrm{E}+00$ | $7.2727 E+018$ | Yes |
| FGA | $7.2386 E+018$ | $3.3512 \mathrm{C}+00$ | 7.7018E+01 | Yes |
| D8S1179 | $9.48298+018$ | $1.9084 \mathrm{E}+01$ | $9.5021 \mathrm{E}+01 \mathrm{~B}$ | Yes |
| D21S11 | $9.7397 \mathrm{E}+018$ | $3.8168 \mathrm{E}+01$ | $9.7447 \mathrm{E}+018$ | Yes |
| 118551 | $7.7828 E+018$ | $4.2445 \mathrm{E}+00$ | $8.0932 \mathrm{E}+1018$ | Yes |
| D5S818 | $4.6690 \mathrm{E}+018$ | $1.5788 \mathrm{E}+00$ | $6.1222 E+018$ | Yes |
| D135317 | $4.3891 \mathrm{E}+018$ | $2.9630 \mathrm{E}+00$ | $7.4766 \mathrm{E}+01 \mathrm{l}$ | Yes |
| 078820 | $5.3773 \mathrm{E}+018$ | 1.8748E+00 | 6.5215E+01 | Yes |
| CSFlP0 | 4.0107E+01 \% | $2.7270 \mathrm{E}+00$ | 7.3169E+01 | Yes |
| TPOX | $8.4034 \mathrm{~F}+018$ | 1.2005 t 01 | $9.23118+018$ | Yes |
| THO1 | $6.6357 \mathrm{E}+018$ | $2.6969 \mathrm{~F}+00$ | $7.2950 \mathrm{E}+01 \mathrm{~b}$ | Yes |
| D165539 | 7.0141E+01 | $3.0769 \mathrm{P}+00$ | 7.5472E+01 | Yes |

September 22, 2003
Popstats 5.3
Page 2
Parentage Calculations Part 2

| Fixed Bin |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Database: | C: \CODISII\CODIS ${ }^{\text {POPDATA }}$, FBI STR |  |  |  |  |  |
| User Name: | eisenber |  |  |  |  |  |
| Boundaries: | 0 |  | 20 |  |  |  |
| Windows: | $>$ | 0.025 | $\leqslant$ | 0.025 | $\leqslant$ | 0.080 |

Population Group: SWH

| Locus | Probability of Exclusion | Parentage <br> Index | Probability <br> of Parentage | Match? |
| :---: | :---: | :---: | :---: | :---: |
| D3S1358 | $3.2971 \mathrm{E}+018$ | 1.1743E+00 | $5.4007 \mathrm{E}+01$ \% | Yes |
| WWA | $6.4867 \mathrm{E}+01$ \% | $2.5694 \mathrm{E}+00$ | $7.1984 \mathrm{E}+01$ \% | Yes |
| FGA | $6.7684 \mathrm{E}+01$ \% | $2.8201 \mathrm{E}+00$ | $7.3823 \mathrm{E}+01$ \% | Yes |
| D8S1179 | $9.5141 \mathrm{E}+01$ \% | $2.0325 \mathrm{E}+01$ | $9.5311 \mathrm{E}+01$ \% | Yes |
| D21S11 | $9.7555 \mathrm{E}+01$ \% | $4.0650 \mathrm{E}+01$ | $9.7599 \mathrm{E}+01$ \% | Yes |
| D18S51 | $6.8890 \mathrm{E}+01$ \% | $2.9412 \mathrm{E}+00$ | $7.4627 \mathrm{E}+01$ \% | Yes |
| D5S818 | $5.0325 \mathrm{E}+01$ \% | 1.7206E+00 | $6.3243 \mathrm{E}+01$ \% | Yes |
| D135317 | $4.1641 \mathrm{E}+01$ \% | $2.8193 \mathrm{E}+00$ | $7.3817 \mathrm{E}+01$ \% | Yes |
| D7S820 | $4.8136 \mathrm{E}+01$ \% | 1. $6329 \mathrm{E}+00$ | $6.2019 \mathrm{E}+01$ \% | Yes |
| CSFlP0 | $3.5486 \mathrm{E}+01$ \% | 2. $4734 \mathrm{E}+00$ | $7.1210 \mathrm{E}+01$ \% | Yes |
| TPOX | $9.3412 \mathrm{E}+01$ \% | $2.9851 \mathrm{E}+01$ | $9.6759 \mathrm{E}+01$ \% | Yes |
| TH01 | $8.0479 \mathrm{E}+01$ \% | $4.8591 \mathrm{E}+00$ | $8.2932 \mathrm{E}+01$ \% | Yes |
| D16S539 | $8.0389 \mathrm{E}+01$ \% | $4.8356 \mathrm{E}+00$ | $8.2864 \mathrm{E}+01$ \% | Yes |
| Total | $1.000 \mathrm{E}+02$ \% | $2.841 \mathrm{E}+08$ | $1.000 \mathrm{E}+02$ \% | Yes |
| Specifications |  |  |  |  |
| Prior probabilty $=0.5$ |  |  |  |  |

## Popstats Cannot Correctly Calculate Parentage Statistics in Non-Typical Cases

## Parentage Statistics in

Non-Typical Cases

- Mutation/Recombination - Tested man does not match at a single genetic locus
- Tested Man is not the biological father but is related to the biological father (brother, son, or father)


## Wifite Popstats 5.3 - [Parentage Target Profile]

 !! 1 File Edit Profile Case Type Configuration Window Help

## Dilit Popstats 5.3 - [Parentage Statistics]

制幸 File Edit Profile Gase Type Gonfiguration Window Help


| CAU |  | ELK |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Lacus | PE[\%] | PI | W[E] | Match? |
| D351358 | 7.30075.071 | 4 | $7.0075 E+01$ | Yes |
| vo/a |  |  |  | No |
| FGA. | 6.83T0E + | 3 | 7.423EE + प7 | Yes |
| D851179 | $7.9263 E+01$ | 5 | $8.2008 \mathrm{E}+01$ | Yes |
| D21511 | $6.70600 \mathrm{E}+01$ | 3 | $7.3411 \mathrm{E}+01$ | 'res |
| D18551 | $4.5011 \mathrm{E}+01$ | 3 | $7.5239 \mathrm{E}+01$ | 'res |
| D55818 | $3.4775 \mathrm{E}+01$ | 2 | $7.0907 \mathrm{E}+01$ | Yes |
| D135317 | $8.1090 \mathrm{E}+01$ | 5 | $8.3403 \mathrm{E}+01$ | 'res |
| D75820 | 6.3680E +01 | 2 | $7.1225 E+01$ | Yes |
| CSF1PO | $4.3904 \mathrm{E}+01$ | 1 | $5.9709 E+01$ | Yes |
| TPGX | $4.0804 \mathrm{E}+00$ | 1 | $5.5617 \mathrm{E}+01$ | 'res |
| TH01 | 6.9722E+01 | 3 | 7.5188E+01 | Yes |
| D165539 | $5.2955 \mathrm{E}+01$ | 2 | $6.4742 \mathrm{E}+01$ | 'res |
| Total | 1.000E +02 | 122.900 | $1.000 \mathrm{E}+02$ | Inconclusive |

## Parentage Calculations Part 1



## Parentage Calculations Part 2

| Fixed Bin |  |  |  |
| :---: | :---: | :---: | :---: |
| Database: |  |  |  |
| User Name: | eiserber |  |  |
| Eoundaries: | 0 | 2000 | 10000 |
| Windows: | $>0.025$ | $\bigcirc 0.025$ | $\bigcirc 0.080$ |

Population Group: CAU

| Locus | Probability of Exalusion | Parentage <br> Index | Probability of Parentage | Match? |
| :---: | :---: | :---: | :---: | :---: |
| D351358 | $7.3891 E+01$ | 3.56, 35+010 | $78076 E+018$ | Yes |
| TITA |  |  |  | Mo |
| FGA | 6.8310E+01 | $2.8818 \mathrm{E}+00$ | $7.4239 \mathrm{E}+018$ | Yes |
| D8S1179 | $7.9263 E+01$ \& | $4.5579 \mathrm{E}+00$ | $8.2008 E+018$ | Yes |
| D21S11 | $6.7060 \mathrm{E}+018$ | $2.7609 \mathrm{E}+00$ | $7.3411 E+018$ | Yes |
| D18s51 | 4.5011E+01 | $3.0386 E+00$ | $7.5239 \mathrm{E}+018$ | Yes |
| D55818 | $3.4775 E+01$ q | $2.4372 \mathrm{E}+00$ | $7.0907 \mathrm{E}+018$ | Yes |
| 0135317 | $8.1090 \mathrm{E}+01 \mathrm{Q}$ | $5.0251 E+00$ | $8.3403 \mathrm{E}+018$ | Yes |
| 075820 | $6.3680 \mathrm{E}+01$ \% | $2.4752 \mathrm{E}+00$ | $7.1225 E+018$ | Yes |
| CSFlFO | $4.3904 \mathrm{E}+01$ \% | 1.4819E+00 | $5.9709 \mathrm{E}+018$ | Yes |
| TPOX | 4.0804E+00 | $1.2531 \mathrm{E}+00$ | $5.5617 \mathrm{E}+018$ | Yes |
| THO1 | 6.9722E+01 | $3.0303 \mathrm{+}+00$ | 7.5188E+01 | Yes |
| D163539 | $5.2955 E+01$ 名 | $1.8362 \mathrm{E}+00$ | 6. $4742 \mathrm{E}+018$ | Yes |

## Case Scenario

A mother, child, and alleged father have been analyzed with the $\mathbf{1 3}$ core CODIS STR loci, the alleged father cannot be excluded at 12 loci, however, there is a single non-matching system (single inconsistency), the alleged father does not contain the obligate paternal allele found in the child at one locus.

# Three possible explanations can be considered: 

1. The alleged father is excluded as the biological father of the child and is unrelated to the true biological father.
2. A mutation or recombination event has occurred altering the allele inherited from the AF by the child.
3. The tested man is not the biological father, but is a 1st order relative of the true biological father, and shares the majority of alleles contributed to the child with the biological father.

# Single Inconsistencies in Paternity Testing 

- The American Association of Blood Banks, in their standards for parentage testing laboratories, has recognized that mutations are naturally occurring genetic events, and the mutation frequency at a given locus shall be documented (5.4.2).
- Standard 6.4.1 - An opinion of nonpaternity shall not be rendered on the basis of an exclusion at a single DNA locus (single inconsistency).


## Mutations in Paternity Testing The "Two Exclusion Rule"

- A single inconsistency is not sufficient to render an opinion of non-paternity, therefore, two inconsistencies have been traditionally considered genetic evidence to exclude a tested man and to issue a finding of non-paternity. This rule has been commonly applied in both serological systems and RFLP testing. However, since STR analysis often examines a battery of a dozen or more systems it is not unexpected to occasionally see two inconsistencies in cases were the tested man is the true biological father.


## Mutations in Paternity Testing Calculating a Paternity Index

- In cases with a single non-matching system, the laboratory cannot simply ignore the inconsistent locus. A paternity index must be calculated for the inconsistent locus, which takes into account the possibility of a mutation.
- The paternity index for a single inconsistency seen in the 13 Core CODIS STR loci is a relatively small number. The system PI is greater than zero but substantially less than one.


# Single Inconsistency Calculating a Paternity Index 



## Single Inconsistency Numerator

| $\frac{\text { Person }}{\text { Mother }}$ | $\frac{\text { Type }}{\text { Child }}$ |
| :---: | :---: |
| Alleged Father | BC |
|  | DE |

In order to explain this evidence Calculate Probability that
a) Woman randomly selected from population is type AB
b) Man randomly selected from population is type DE, and
c) Their child is type BC

## Single Inconsistency Numerator

Person<br>Mother<br>Type<br>Child<br>Alleged Father<br>AB<br>BC DE

In order to explain this evidence the numerator must calculate the probability that a man without a C allele will contribute a C allele
$\mathrm{X}=\mathrm{P}($ man without C allele will contribute C allele $)$ $=\mathrm{P}($ contributed gene will mutate $) \times \mathrm{P}($ mutated gene will be a C$)$

## Single Inconsistency Numerator

## $\mathrm{X}=\mathrm{P}($ man without C will contribute C$)$

$\mathrm{X}=\mathrm{P}$ (contributed gene will mutate) x P (mutated gene will be a C )
$\mu=$ observed rate of mutations/meiosis for the locus
$\mathrm{P}($ mutated gene will be a C$)$ ie. Frequency of C allele $=\mathrm{c}$

$$
\mathrm{X}=\mu \times \mathrm{c}
$$

# Single Inconsistency Calculating a Paternity Index Numerator 



Probability $=2 \mathrm{ab} \times 2 \mathrm{de} \times 0.5 \times \mu \times \mathrm{c}$

# Single Inconsistency Denominator 

Person<br>Mother<br>Child<br>Type<br>AB<br>Alleged Father

In order to explain this evidence Calculate Probability that
a) Woman randomly selected from population is type AB
b) An alternative man randomly selected from population is type DE , and
c) The woman's child, fathered by random man, is type BC

# Single Inconsistency Denominator 

Person<br>Mother Child<br>Alleged Father<br>Type<br>AB<br>BC<br>DE

In order to explain this evidence the denominator must calculate the probability that the paternal allele is C and a random man would have a genotype inconsistent with paternity at this locus
$\mathrm{Y}=\mathrm{P}$ (paternal allele is C and random man has no C allele)
$=\mathrm{P}($ paternal gene is C$) \times \mathrm{P}($ random man has no C allele $)$

## Single Inconsistency Denominator

$\mathrm{Y}=\mathrm{P}$ (paternal allele is C and random man has no C allele)
$=\mathrm{P}($ paternal gene is C$) \times \mathrm{P}($ random man has no C allele $)$
$\mathrm{P}($ paternal allele will be a C$)$ ie. Frequency of C allele $=\mathrm{C}$
$\mathrm{P}($ random man has no C allele $)=$ probability of exclusion
The AABB does not use the case specific power of exclusion, but the mean power of exclusion ( $\overline{\mathrm{A}})$

$$
\mathrm{Y}=\mathrm{c} \cdot \overline{\mathrm{~A}}
$$

# Single Inconsistency Calculating a Paternity Index Denominator 



Probability $=2 \mathrm{ab} \times 2 \mathrm{de} \times 0.5 \times \mathrm{c} \times \overline{\mathrm{A}}$

## Single Inconsistency Paternity Index

$$
\begin{aligned}
& \mathrm{PI}=\frac{2 \mathrm{ab} \times 2 d e \times 0.5 \times \mu \times}{2 \mathrm{ab} \times 2 d e \times 0.5 \times \mathrm{x} \times \frac{\alpha}{\mathrm{A}}} \\
& \mathrm{PI}=\quad \frac{\mu}{\overline{\mathrm{A}}}
\end{aligned}
$$

## Mutation Rates and Mean Power of

 Exclusion for CODIS Core STR LociLocus
CSF1PO
TPOX
TH01
vWA

Mutation Rate
0.0013
0.0005
0.0003
0.0034
0.0013
0.0019
0.0017
0.0017

Mean PE
0.455
0.537
0.503
0.667
0.590
0.648
0.582
0.566

Mutation Rates and Mean Power of Exclusion for CODIS Core STR Loci

## Locus

FGA
D8S1179
D18S51
D21S11
D3S1358

Mutation Rate
0.0030
0.0019
0.0032
0.0010
0.0010

Mean PE
0.750
0.554
0.740
0.791
0.596

# Mutation Rates and Mean Power of Exclusion for Additional STR Loci 

## Locus

F13AO1
FESFPS
F13B
LIPOL
PENTA E

Mutation Rate
0.0009
0.0007
0.0005
0.0012
0.0012

Mean PE
0.577
0.620
0.507
0.451
0.797

## Single Inconsistency P-41411

M C AF Pl Formula

| HUMCSF1PO | 12 | 12 | 12 | $0.5 /(a+b)]$ |
| :--- | ---: | ---: | ---: | :---: |
|  | 8 | 8 | 10 |  |
| HUMTPOX | 11 | 11 | 11 | $1 /(a+b)$ |
|  | 8 | 8 | 8 |  |
| HUMTH01 | 7 | $9 p$ | 9 | $0.5 / a$ |
|  |  | 7 m | 6 |  |
| HUMVWA31 | 19 | 19 m | 17 | $\mu / \mathbf{A}$ |
|  | 18 | 16 p | 15 | $(0.0034 / 0.667)$ |

## Single Inconsistency P-41411

M C AF Paternity Index

HUMCSF1PO

| 12 | 12 | 12 |
| ---: | ---: | ---: |
| 8 | 8 | 10 | 1.52

HUMTPOX

| 11 | 11 | 11 |
| ---: | ---: | ---: |
| 8 | 8 | 8 |

1.25

HUMTH01
7
$\begin{array}{ll}9 p & 9 \\ 7 m & 6\end{array}$
3.03

HUMvWA31

| 19 | $19 m$ | 17 |
| :--- | :--- | :--- |
| 18 | $16 p$ | 15 |

0.005

## Single Inconsistency P-41411

M C AF PI Formula

D16S539
12 12m 12
$11 p \quad 11$
$0.5 / a$

D7S820
$\begin{array}{rrr}10 & 11 \mathrm{p} & 11 \\ 9 & 9 \mathrm{~m} & 10\end{array}$
0.5/a

D13S317
$\begin{array}{rrr}12 & 12 m & 11 \\ 10 & 8 p & 8\end{array}$
$0.5 / a$

D5S818

$1 / a$

## Single Inconsistency P-41411

M C AF Paternity Index

D16S539
12

| $12 m$ | 12 |
| :--- | :--- |
| $11 p$ | 11 |

$10 \quad 11 p \quad 11$
D7S820
$9 \quad 9 m \quad 10$
2.48

D13S317
$\begin{array}{rrr}12 & 12 m & 11 \\ 10 & 8 p & 8\end{array}$
5.03

D5S818
13
11

# Single Inconsistency P-41411 

|  | M | c | AF | PI Formula |
| :---: | :---: | :---: | :---: | :---: |
| FGA | 24 23 | $\underset{21 \mathrm{p}}{24 \mathrm{~m}}$ | 23 21 | 0.5/a |
| D18S51 | 17 14 | 17 | 14 | $1 /(a+b)$ |
| D21S11 | 30 <br> 28 | $\begin{aligned} & 30 m \\ & 29 p \end{aligned}$ | 29 28 1 | 0.5/a |
| D3S1358 | 114 | 14 | 15 14 | 0.5/a |
| D8S1179 | 14 10 | 15p | 15 | 0.5/a |

## Single Inconsistency P-41411

## M C AF Paternity Index

| FGA | 24 | $24 m$ | 23 | 2.88 |
| :--- | :--- | :--- | :--- | :--- |
|  | 23 | 21 p | 21 |  |
| D18S51 | 17 | 17 | 14 | 3.04 |
|  | 14 | 14 |  |  |
| D21S11 | 30 | $30 m$ | 29 | 2.76 |
|  | 28 | $29 p$ | 28 |  |
| D3S1358 | 15 | 14 | 15 | 3.56 |
|  | 14 |  | 14 |  |
| D8S1179 | 14 | $15 p$ | 15 | 4.56 |

# Paternity Trio with a Single Inconsistency 

12 STR without vWA
Combined Paternity Index Probability of Paternity

126,476
99.9992\%

Single Inconsistency at vWA
Combined Paternity Index
632
Probability of Paternity
99.84\%

## Single Inconsistencies in Paternity Testing

A mutation may be one of the possible explanations, the genetic results could suggest that a close relative (such as a brother, child or father) may be the biological father.

# Single Inconsistencies in Paternity Testing 

When considering brothers, on average a tested man and his brother will share $50 \%$ of their alleles... each can contribute these alleles in a random manner. This is also true between a father and son of a tested man.

## Avuncular Index

## AI

We can use the development of a likelihood ratio to test two competing hypotheses:
$\mathrm{H}_{1}$ : The tested man's brother is the biological father of the child
$\mathrm{H}_{2}$ : A random man is the biological father of the child

## Avuncular Index Numerator

## $\mathbf{H}_{1}$ : The tested man's brother is the biological father of the child

$$
\begin{aligned}
& \mathbf{H}_{1}=\frac{\mathbf{X}+\mathbf{Y}}{2} \\
& \mathbf{H}_{1}=\mathbf{0 . 5 \mathbf { X }}+\mathbf{0 . 5 \mathbf { Y }}
\end{aligned}
$$

## Avuncular Index Denominator

## $\mathrm{H}_{2}$ : A random man is the biological father of the child

$$
H_{2}=Y
$$

## Avuncular Index AI

## The Avuncular Index for any system can be written as:

$$
\mathrm{AI}=\frac{0.5 \mathrm{X}+0.5 \mathrm{Y}}{\mathrm{Y}}
$$

$$
\mathrm{AI}=\frac{\mathrm{PI}+1}{2}
$$

# Single Inconsistency P-41411 

|  | M | C | AF | Paternity | Avuncular |
| :--- | ---: | ---: | ---: | :--- | :--- |
| Index | Index |  |  |  |  |

# Single Inconsistency P-41411 

|  | M | C | AF | Paternity <br> Index | Avuncular <br> Index |
| :--- | ---: | ---: | ---: | :---: | :---: |
| D16S539 | 12 | 12 m | 12 | 1.84 | 1.42 |
|  |  | 11 p | 11 |  |  |
| D7S820 | 10 | 11 p | 11 | 2.48 | 1.74 |
|  | 9 | 9 m | 10 | 2.48 |  |
| D13S317 | 12 | 12 m | 11 | 5.03 | 3.02 |
|  | 10 | 8 p | 8 |  |  |
| D5S818 | 13 | 11 | 11 | 2.44 | 1.72 |

# Single Inconsistency P-41411 

|  | $\mathbf{M}$ | C | AF | Paternity <br> Index | Avuncular <br> Index |
| :--- | :--- | :--- | :--- | :--- | :--- |
| FGA |  |  |  | 24 | 24 m |
|  | 23 | 2.88 | 1.94 |  |  |
|  | 23 | 21 p | 21 |  |  |
| D18S51 | 17 | 17 | 14 | 3.04 | 2.02 |
|  | 14 | 14 |  |  |  |
| D21S11 | 30 | 30 m | 29 | 2.76 | 1.88 |
|  | 28 | 29 p | 28 |  |  |
| D3S1358 | 15 | 14 | 15 | 3.56 | 2.28 |
|  | 14 |  | 14 |  |  |
| D8S1179 | 14 | 15 p | 15 | 4.56 | 2.78 |

# Paternity Trio with a Single Inconsistency 

## 13 Core CODIS STR Loci

Combined Paternity Index
632
Combined Avuncular Index
862

# Single Inconsistency P-41411 

M C AF \begin{tabular}{c}
Paternity <br>
Index

 

Avuncular <br>
Index
\end{tabular}

| F13AO1 | 72 | 7 | 12 | 4.83 | 2.92 |
| :--- | ---: | ---: | ---: | ---: | ---: |
|  | 12 | 12 |  |  |  |
| FESFPS | 11 | 11 | 11 | 1.41 | 1.21 |
|  | 12 |  | 12 |  |  |
| F13B | 9 | 9 | 8 | 2.06 | 1.53 |
|  |  |  | 9 |  |  |
| LIPOL | 10 | 10 m | 13 | 16.95 | $\mathbf{8 . 9 8}$ |
|  | 11 | $13 p$ |  |  |  |
| PENTA E | 14 | $13 p$ | 13 | 3.85 | 2.43 |

# Paternity Trio with a Single Inconsistency 

## 18 STR Loci

## Combined Paternity Index

578,603
Combined Avuncular Index
101,683

# We can use a likelihood ratio to test two competing hypotheses: 

$\mathrm{H}_{1}$ : The tested man (alleged father) is the biological father of the child
$\mathbf{H}_{2}$ : The tested man's brother is the biological father of the child

# We can use a likelihood ratio to test two competing hypotheses: 

## Combined Paternity Index

Combined Avuncular Index

$$
\frac{578,603}{101,683}=5.69
$$

The observed genetic results are 5.7-times more likely to occur under the scenario that the tested man is the father of the child, as opposed to the scenario that the tested man was the uncle of the child.

## PowerPlex ${ }^{\text {TM }} 16$ System

Extremely Useful in Cases with a Single Non-Matching Locus

## P-52147 Case of Single Exclusion



## P-52147 Case of Single Exclusion



## P-52147 Case of Single Exclusion



52147 MS ..le2/27/01 3 Yellow 52147 M


52147 AS...le2/27/014 Yellow 52147 C

$52147 \mathrm{BE} . . \operatorname{le} 2 / 27 / 015$ Yellow 52147 AF


## P-52147 Case of Single Exclusion PowerPlex ${ }^{\text {TM }} 16$ System

## 13 STR loci minus Penta D \& Penta E

 Residual Combined Paternity Index 1,914 Probability of Exclusion 99.99997\% Probability of Paternity(prior=0.5) 99.95\%
## 15 STR loci with Penta D \& Penta E

Residual Combined Paternity Index 37,699 Probability of Exclusion
99.999998\%

Probability of Paternity(prior=0.5) $99.997 \%$

## Popstats Cannot Correctly Calculate Parentage Statistics in Non-Typical Cases

## What if We Don't Have the Mother's Genetic Data?

Popstats Cannot Calculate the Paternity Statistics Without the Known Parent (Mother)

We can still develop a likelihood estimation for parentage.

Lets examine the following logic:

Dilit Popstats 5.3-[Parentage Target Profile]
!n File Edit Frofile Gase Type Gonfiguration window Help


Popstats Can only Calculate with a Complete Trio (Mother, Child, Alleged Father)

## Paternity Index

## Only Man and Child Tested

- Observe two types - from a man and a child
- Assume true duo- the man is the father of the child
- Assume false duo - the man is not the father of the child (simply two individuals selected at random)
- In the false duo the child's father is a man of unknown type, selected at random from population (unrelated to tested man)


## Paternity Index

Only Man and Child Tested Hypothetical case
DNA Analysis Results in Two Genotypes

Mother
Child
Alleged Father

Not Tested
(AB)
(AC)

# Motherless Paternity Index 

 PI determination in hypothetical DNA System$$
\begin{aligned}
& \text { PI = X / Y } \\
& \text { Numerator }
\end{aligned}
$$

$\mathrm{X}=$ is the probability that (1) a man randomly selected from a population is type AC, and (2) his child is type AB.
$\mathrm{X}=\operatorname{Pr}\{\mathrm{AF}$ passes $\boldsymbol{A}\} \times \operatorname{Pr}\{\mathrm{M}$ passes $\boldsymbol{B}\}+$ $\operatorname{Pr}\{\mathbf{A F}$ passes $\boldsymbol{B}\} \times \operatorname{Pr}\{\mathbf{M}$ passes $\boldsymbol{A}\}$

Motherless Paternity Index PI determination in hypothetical DNA System

$$
\mathrm{PI}=\mathrm{X} / \mathrm{Y}
$$

## Denominator

$\mathrm{Y}=$ is the probability that (1) a man randomly selected and unrelated to tested man is type AC, and (2) a child unrelated to the randomly selected man is AB.
$\mathbf{Y}=\operatorname{Pr}\{$ RM passes $\boldsymbol{A}\} \times \operatorname{Pr}\{\mathbf{M}$ passes $\boldsymbol{B}\}+$ $\operatorname{Pr}\{\mathbf{R M}$ passes $B\} \mathbf{x} \operatorname{Pr}\{\mathbf{M}$ passes $A\}$

## Motherless Paternity Index

- When the mother's genetic data is present, $\operatorname{Pr}\{\mathrm{M}$ passes $A\}$ is $0,0.5$, or 1 , and $\operatorname{Pr}\{\mathrm{M}$ passes $B\}$ is $0,0.5$, or 1
- Without the mother's data, Pr \{M passes $A\}$ becomes the frequency of the gametic allele, $p$ and $\operatorname{Pr}\{\mathrm{M}$ passes $B\}$ becomes the frequency of the gametic allele, $q$.


## Motherless Paternity Index

So, if we have a heterozygous child $A B$, and a heterozygous Alleged Father AC then $\mathbf{X}=\operatorname{Pr}\{\mathbf{A F}$ passes $\boldsymbol{A}\} \times \operatorname{Pr}\{\mathbf{M}$ passes $\boldsymbol{B}\}+$ $\operatorname{Pr}\{\mathbf{A F}$ passes $\boldsymbol{B}\} \times \operatorname{Pr}\{\mathbf{M}$ passes $\boldsymbol{A}\}$
$\mathrm{X}=\operatorname{Pr}\left\{\right.$ AF $^{\text {F }}$ passes $\left.A\right\} \times \boldsymbol{q}+\operatorname{Pr}\{\mathbf{A F}$ passes $\boldsymbol{B}\} \times p$ $\operatorname{Pr}\left\{\right.$ AF $^{F}$ passes $\left.A\right\}=0.5$ $\operatorname{Pr}\{$ AF passes $\boldsymbol{B}\}=\mathbf{0}$
$\mathrm{X}=0.5 \times q+0 \times p$
$\mathrm{X}=0.5 q$

## Motherless Paternity Index

So, if we have a heterozygous child $A B$, and a heterozygous Alleged Father AC then
$\mathbf{Y}=\operatorname{Pr}\{\mathbf{R M}$ passes $\boldsymbol{A}\} \times \operatorname{Pr}\{\mathbf{M}$ passes $\boldsymbol{B}\}+$ $\operatorname{Pr}\{$ RM passes $B\} \times \operatorname{Pr}\{\mathbf{M}$ passes $A\}$
$\mathbf{Y}=\mathbf{p} \mathbf{x} \mathbf{q}+\mathbf{q} \mathbf{x}$
$\mathbf{Y}=\mathbf{2 p q}$

## Motherless Paternity Index

So, if we have a heterozygous child $A B$, and a heterozygous Alleged Father AC then

$$
\begin{aligned}
\mathrm{PI} & =\mathrm{X} / \mathrm{Y} \\
\mathrm{X} & =0.5 q \\
\mathrm{Y} & =2 \mathrm{pq} \\
\mathrm{PI} & =0.5 q / 2 \mathrm{pq} \\
\mathrm{PI} & =0.25 / \mathrm{p} \\
\mathrm{PI} & =1 / 4 \mathrm{p}
\end{aligned}
$$

## Paternity Index Only Man and Child Tested

Parents

Child


The untested Mother could have passed either the A or B allele
AF has a 1 in 2 chance of passing $A$ allele RM has $(p+q)$ chance of passing the A or $B$ allele

## Paternity Index

Only Man and Child Tested


## Paternity Index Only Man and Child Tested Numerator



Probability $=2 p_{A} p_{C} \times 2 p_{A} p_{B} \times 0.5_{(f A)} \times p_{B}$

## Paternity Index Only Man and Child Tested Denominator


probability =
$2 p_{A} p_{C} \times 2 p_{A} p_{B} \times\left(p_{(m A)} \times p_{(f B)}+p_{(m B)} \times p_{(f A)}\right)$

## Paternity Index Only Man and Child Tested

$$
\begin{gathered}
\mathrm{Pl}=\frac{2 p_{A} \mathrm{p}_{B} \times 2 p_{A} \mathrm{p}_{C} \times 0.5_{(\mathrm{mA})} \times \mathrm{p}_{B}}{2 \mathrm{P}_{A} \mathrm{R}_{B} \times 2 \mathrm{p}_{A} \mathrm{R}_{C} \times\left(\mathrm{p}_{(\mathrm{mA})} \times p_{(\mathrm{fB})}+\mathrm{p}_{(\mathrm{mB})} \times p_{(\mathrm{fA})}\right)} \\
\mathrm{Pl}=\frac{0.5 p_{B}}{2 p_{A} p_{B}} \\
\mathrm{Pl}=\frac{0.25}{\mathrm{p}_{\mathrm{A}}}
\end{gathered}
$$

## Paternity Index Only Man and Child Tested

Parents

Child


The untested Mother could have passed either the A or B allele
AF can only pass A allele
RM has $(p+q)$ chance of passing the A or $B$ allele

## Paternity Index

Only Man and Child Tested


## Paternity Index

## Only Man and Child Tested <br> Numerator



Probability $=p_{A}^{2} \times 2 p_{A} p_{B} \times 1_{(f A)} \times p_{B}$

## Paternity Index Only Man and Child Tested Denominator


probability =
$p_{A}^{2} \times 2 p_{A} p_{B} \times\left(p_{(\mathrm{mA})} \times p_{(f B)}+p_{(m B)} \times p_{(f \mathrm{AA}}\right)$

## Paternity Index Only Man and Child Tested

$$
\begin{gathered}
\mathrm{Pl}=\frac{p_{A}^{2} \times 2 p_{A} R_{C} \times 1_{(\mathrm{mA})} \times p_{B}}{P_{A}^{2} \times 2 p_{A} P_{C} \times\left(p_{(\mathrm{mA})} \times p_{(\mathrm{fB})}+p_{(\mathrm{mB})} \times p_{(\mathrm{fA})}\right)} \\
\mathrm{Pl}=\frac{2 p_{B}}{2 p_{A} P_{B}} \\
\mathrm{Pl}=\frac{0.5}{p_{A}}
\end{gathered}
$$

## Paternity Index Only Man and Child Tested

Parents

Child


The untested Mother could have passed either the A or B allele
AF can pass either A or B allele
RM has $(p+q)$ chance of passing the $A$ or $B$ allele

## Paternity Index

Only Man and Child Tested


## Paternity Index Only Man and Child Tested Numerator



Probability =

$$
2 p_{A} p_{B} \times 2 p_{A} p_{B} \times\left(0.5_{(f A)} \times p_{B}+0.5_{(f B)} \times p_{A}\right)
$$

## Paternity Index Only Man and Child Tested Denominator


probability =

$$
2 p_{A} p_{B} \times 2 p_{A} p_{B} \times\left(p_{(m A)} \times p_{(f B)}+p_{(m B)} \times p_{(f \mathrm{AA})}\right)
$$

## Paternity Index Only Man and Child Tested

$$
\begin{gathered}
\mathrm{Pl}=\frac{2 p_{A} \mathrm{R}_{\mathrm{B}} \times 2 p_{A} p_{B} \times\left(0.5(\mathrm{fA}) \times p_{B}+0.5_{(\mathrm{fB})} \times p_{A}\right)}{2 p_{A} \mathrm{R}_{\mathrm{B}} \times 2 p_{A} p_{B} \times\left(p_{(\mathrm{mA})} \times p_{(\mathrm{fB})}+p_{(\mathrm{mB})} \times p_{(\mathrm{fA})}\right)} \\
\mathrm{PI}=\frac{0.5 p_{B}+0.5 p_{A}}{2 p_{A} p_{B}} \\
\mathrm{Pl}=\frac{p_{A}+p_{B}}{4 p_{A} p_{B}}
\end{gathered}
$$

## Paternity Index Only Man and Child Tested

Parents

Child


The untested Mother would have to pass an A allele
AF can pass only the A allele
RM has p chance of passing the A allele

## Paternity Index

Only Man and Child Tested


## Paternity Index Only Man and Child Tested Numerator



Probability $=p_{A}^{2} \times p_{A}^{2} \times 1_{(f A)} \times p_{A}$

# Paternity Index Only Man and Child Tested Denominator 


probability $=p_{A}^{2} \times p_{A}^{2} \times p_{(m A)} \times p_{(f A)}$

# Paternity Index Only Man and Child Tested 

$$
\begin{aligned}
& \mathrm{PI}=\frac{p_{A}^{2} \times p_{A}^{2} \times 1_{(\mathrm{fA})} \times p_{A}}{p_{A}^{2} \times p_{A}^{2} \times p_{(\mathrm{mA})} \times p_{(\mathrm{fA})}} \\
& \mathrm{PI}=\frac{p_{A}}{p_{A} \times p_{A}} \\
& \mathrm{PI}=\frac{1}{p_{A}}
\end{aligned}
$$

## Paternity Index Only Man and Child Tested

Parents

Child


The untested Mother would have to pass an A allele
AF would have to pass the A allele RM has p chance of passing the A allele

## Paternity Index

Only Man and Child Tested


## Paternity Index Only Man and Child Tested Numerator



Probability $=2 p_{A} p_{B} \times p_{A}^{2} \times 0.5_{(f A)} \times p_{A}$

## Paternity Index Only Man and Child Tested Denominator


probability $=2 p_{A} p_{B} \times p_{A}^{2} \times p_{(m A)} \times p_{(f A)}$

## Paternity Index Only Man and Child Tested

$$
P I=\frac{2 P_{A} R_{B} \times P_{A}^{2} \times 0.5_{(\mathrm{fA})} \times P_{A}}{2 P_{A} R_{B} \times P_{A}^{2} \times P_{(\mathrm{mA})} \times P_{(\mathrm{fA})}}
$$

$$
\mathrm{Pl}=
$$

$$
0.5 p_{A}
$$

$$
p_{A} \times p_{A}
$$

$$
\mathrm{Pl}=
$$

$$
0.5
$$

$$
p_{\mathrm{A}}
$$

# Paternity Index Only Man and Child Tested Formulas 

Single locus, no null alleles, low mutation rate, codominance

| C | AF | Numerator | min | r PI | PE |
| :---: | :---: | :---: | :---: | :---: | :---: |
| AB | AC | 0.5 b | 2ab | 0.25/a | $[1-(\mathrm{a}+\mathrm{b})]^{2}$ |
| AB | AB | $0.5(a+b)$ | 2ab | (a+b)/4ab | $[1-(\mathrm{a}+\mathrm{b})]^{2}$ |
| AB | A | b | 2ab | 0.5/a | $[1-(\mathrm{a}+\mathrm{b})]^{2}$ |
| A | AC | 0.5a | $\mathrm{a}^{2}$ | 0.5/a | $(1-a)^{2}$ |
| A | A | a | $\mathrm{a}^{2}$ | 1/a | $(1-a)^{2}$ |

# MOTHERLESS PATERNITY CASE P-41376 <br> C AF Allele 

Frequencies

| HUMCSF1PO <br> (5q33.3-q34) | 11 | 11 | $10=0.25269$ |
| :--- | :---: | :---: | ---: |
| HUMTPOX | 8 | 8 | $11=0.30049$ |
| HUMT <br> (2p23-2pter) | 11 | 11 | $11=0.54433$ |
| HUMTH01 | 6 | 6 | $6=0.25369$ |
| (11p15.5) | 9.3 | 7 | $9.3=0.30542$ |
| HUMvWA31 | 15 | 16 | $15=0.11224$ |
| (12p13.3-p13.2) | 16 |  | $16=0.20153$ |

## MOTHERLESS PATERNITY CASE P-41376 <br> C AF PI Formula

| HUMCSF1PO <br> (5q33.3-q34) | 11 | 11 | $\mathbf{0 . 2 5 / a}$ |
| :--- | :---: | :---: | :---: |
| HUMTPOX | 8 | 8 |  |
| (a+b)/4ab <br> (2p23-2pter) | 11 | 11 |  |
| HUMTH01 | 6 | 6 | $\mathbf{0 . 2 5 / a}$ |
| (11p15.5) | 9.3 | 7 |  |
| HUMVWA31 <br> (12p13.3-p13.2) | 16 | 16 | $\mathbf{0 . 5 / a}$ |

## MOTHERLESS PATERNITY CASE P-41376 C AF PI

| HUMCSF1PO | 10 | 11 | 0.83 |
| :---: | :---: | :---: | :---: |
| (5q33.3-q34) | 11 | 12 |  |
| HUMTPOX | 8 | 8 | 1.44 |
| (2p23-2pter) | 11 | 11 |  |
| HUMTH01 | 6 | 6 | 1.10 |
| (11p15.5) | 9.3 | 7 |  |
| HUMvWA31 | 15 | 16 | 2.48 |
| (12p13.3-p13.2) | 16 |  |  |

## MOTHERLESS PATERNITY CASE P-41376 <br> C AF PE Formulas

| HUMCSF1PO <br> (5q33.3-q34) | 11 | 11 | $[1-(a+b)]^{2}$ |
| :--- | :---: | :---: | :---: |
| HUMTPOX | 8 | 8 | $[1-(a+b)]^{2}$ |
| (2p23-2pter) | 11 | 11 |  |
| HUMTH01 | 6 | 6 | $[1-(a+b)]^{2}$ |
| (11p15.5) | 9.3 | 7 |  |
| HUMvWA31 | 15 | 16 | $[1-(a+b)]^{2}$ |
| $(12 p 13.3-p 13.2)$ | 16 |  |  |

## MOTHERLESS PATERNITY CASE P-41376 C AF PE

| HUMCSF1PO <br> (5q33.3-q34) | 10 | 11 | $\mathbf{0 . 1 9 8 8}$ |
| :--- | :---: | :---: | :---: |
| HUMTPOX | 8 | 8 | $\mathbf{0 . 0 4 0 8}$ |
| HUMTP <br> (2p23-2pter) | 11 | 11 |  |
| HUMTH01 | 6 | 6 | $\mathbf{0 . 2 1 9 0}$ |
| (11p15.5) | 9.3 | 7 |  |
| HUMvWA31 <br> (12p13.3-p13.2) | 15 | 16 | $\mathbf{0 . 4 7 0 9}$ |

## MOTHERLESS PATERNITY

 CASE P-41376|  | C | AF | Allele <br> Frequencies |
| :--- | :---: | :---: | :---: |
| D16S539 | 12 | 11 | $12=0.33911$ |
| (16p24 - p25) | 13 | 12 | $13=0.16337$ |
| D7S820 | 11 | 11 | $11=0.20197$ |
| (7q) | 12 | 14 | $12=0.14030$ |
| D13S317 | 11 | 11 | $11=0.31888$ |
| (13q22-q31) |  |  |  |
| D5S818 | 11 | 11 | $11=0.41026$ |
| (5q21-q31) | 13 | 12 | $13=0.14615$ |

# MOTHERLESS PATERNITY CASE P-41376 <br> C AF <br> PI Formulas 

| D16S539 | 12 | 11 | $\mathbf{0 . 2 5 / a}$ |
| :--- | :--- | :--- | :---: |
| (16p24-p25) | 13 | 12 |  |
| D7S820 | 11 | 11 | $\mathbf{0 . 2 5 / a}$ |
| (7q) | 12 | 14 |  |
| D13S317 | 11 | 11 | $\mathbf{1 / a}$ |
| (13q22-q31) |  |  |  |
| D5S818 | 11 | 11 | $\mathbf{0 . 2 5 / a}$ |
| (5q21-q31) | 13 | 12 |  |

# MOTHERLESS PATERNITY CASE P-41376 <br> C AF <br> PI 

| D16S539 <br> (16p24 - p25) | 12 | 11 | $\mathbf{0 . 7 4}$ |
| :--- | :--- | :--- | :--- |
| D7S820 | 12 |  |  |
| (7q) | 11 | 11 | $\mathbf{1 . 2 4}$ |
| D13S317 | 11 | 11 | $\mathbf{3 . 1 4}$ |
| (13q22-q31) |  |  |  |
| D5S818 | 11 | 11 | $\mathbf{0 . 6 1}$ |
| (5q21-q31) | 13 | 12 |  |

# MOTHERLESS PATERNITY CASE P-41376 <br> C AF PE Formulas 

| D16S539 | 12 | 11 | $[1-(a+b)]^{2}$ |
| :---: | :---: | :---: | :---: |
| (16p24-p25) | 13 | 12 |  |
| D7S820 | 11 | 11 | $[1-(a+b)]^{2}$ |
| (7q) | 12 | 14 |  |
| $\begin{aligned} & \text { D13S317 } \\ & (13 q 22-q 31) \end{aligned}$ | 11 | 11 | $(1-a)^{2}$ |
| D5S818 | 11 | 11 | $[1-(a+b)]^{2}$ |
| (5q21-q31) | 13 | 12 |  |

# MOTHERLESS PATERNITY CASE P-41376 <br> C AF <br> PE 

| D16S539 <br> (16p24-p25) | 12 | 11 | $\mathbf{0 . 2 4 7 5}$ |
| :--- | :--- | :--- | :--- |
| D7S820 | 12 |  |  |
| (7q) | 11 | 11 | $\mathbf{0 . 4 3 2 5}$ |
| D13S317 14 |  |  |  |
| (13q22-q31) | 11 | 11 | $\mathbf{0 . 4 6 3 9}$ |
| D5S818 |  |  |  |
| (5q21-q31) | 11 | 11 | $\mathbf{0 . 1 9 6 8}$ |
|  | 13 | 12 |  |

## MOTHERLESS PATERNITY CASE P-41376

|  | C | AF | Allele <br> Frequencies |
| :--- | :--- | :--- | :--- |
| FGA | 19 | 19 | $19=0.05612$ |
| (4q28) | 21 | 25 | $21=0.17347$ |
| D18S51 | 16 | 16 | $16=0.10714$ |
| (18q21.3) |  | 20 |  |
| D21S11 | 29 | 28 | $29=0.18112$ |
| (21q11.2-q21) |  | 29 |  |
| D3S1358 | 15 | 15 | $15=0.24631$ |
| (3p) | 18 | 17 | $18=0.16256$ |
| D8S1179 | 11 | 11 | $11=0.05867$ |
| (8) | 13 | 13 | $13=0.33929$ |

# MOTHERLESS PATERNITY CASE P-41376 <br> C AF <br> PI Formulas 

FGA
(4q28)
D18S51
(18q21.3)
D21S11
(21q11.2-q21)
D3S1358
(3p)
D8S1179
(8)

| 19 | 19 | $\mathbf{0 . 2 5 / a}$ |
| :---: | :---: | :---: |
| 21 | 25 |  |
| 16 | 16 | $\mathbf{0 . 5 / a}$ |
|  | 20 |  |
| 29 | 28 | $\mathbf{0 . 5} / \mathbf{a}$ |
|  | 29 |  |
| 15 | 15 | $\mathbf{0 . 2 5 / a}$ |
| 18 | 17 |  |
| 11 | 11 | $\mathbf{( a + b ) / 4 a b}$ |
| 13 | 13 |  |

# MOTHERLESS PATERNITY CASE P-41376 <br> <br> C AF <br> <br> C AF <br> PI 

FGA
(4q28)
D18S51
(18q21.3)
D21S11
(21q11.2-q21)
D3S1358
(3p)
D8S1179
(8)

| 19 | 19 | $\mathbf{4 . 4 5}$ |
| :--- | :--- | :--- |
| 21 | 25 |  |
| 16 | 16 | $\mathbf{4 . 6 7}$ |
|  | 20 |  |
| 29 | 28 | $\mathbf{2 . 7 6}$ |
|  | 29 |  |
| 15 | 15 | $\mathbf{1 . 0 2}$ |
| 18 | 17 |  |
| 11 | 11 | $\mathbf{5 . 0 0}$ |
| 13 | 13 |  |

## MOTHERLESS PATERNITY CASE P-41376 <br> C AF PE Formulas

FGA
(4q28)
D18S51
(18q21.3)
D21S11
(21q11.2-q21)
D3S1358
(3p)
D8S1179
(8)

| 19 | 19 | $[1-(a+b)]^{2}$ |
| :---: | :---: | :---: |
| 21 | 25 |  |
| 16 | 16 | $(1-a)^{2}$ |
|  | 20 |  |
| 29 | 28 | $(1-a)^{2}$ |
|  | 29 |  |
| 15 | 15 | $[1-(a+b)]^{2}$ |
| 18 | 17 |  |
| 11 | 11 | $[1-(a+b)]^{2}$ |
| 13 | 13 |  |

# MOTHERLESS PATERNITY CASE P-41376 <br> C AF PE 

FGA
(4q28)
D18S51
(18q21.3)
D21S11
(21q11.2-q21)
D3S1358
(3p)
D8S1179
(8)
$\begin{array}{ll}19 & 19 \\ 21 & 25\end{array}$
$16 \quad 16$
20

| $29 \quad 28$ |
| :--- |
|  |
|  |

$\begin{array}{ll}15 & 15 \\ 18 & 17\end{array}$
$11 \quad 11$
1313
0.5935
0.7972
0.6706
0.3944
0.3625

# Motherless Paternity 13 Core CODIS Loci 

## Combined Paternity Index <br> 1,676

Probability of Paternity
99.94\%

Probability of Exclusion
99.94\%

## PowerPlex ${ }^{\text {TM }} 16$ System

Extremely Useful in Cases
Where the Mother is Not Tested (Motherless Cases)

## PowerPlex ${ }^{\text {TM }} 16$

## Motherless Case P-54137



## PowerPlex ${ }^{\text {TM }} 16$

Motherless Case P-54137

$9947 \mathrm{~A}(10 .$. le8/21/01 9 Green $9947 \mathrm{~A}(10 / 16 \mathrm{~N})-\mathrm{PP} 16$


# PowerPlex ${ }^{\text {TM }} 16$ <br> Motherless Case P-54137 



## Motherless Case P-54137

## PowerPlex ${ }^{\text {TM }} 16$ System

13 STR loci minus Penta D \& Penta E Combined Paternity Index $\quad 1,050$ Probability of Exclusion $99.98 \%$ Probability of Paternity(prior=0.5) $99.90 \%$

15 STR loci with Penta D \& Penta E

Combined Paternity Index Probability of Exclusion Probability of Paternity(prior=0.5) 99.992\%

## Popstats Cannot Correctly Calculate Parentage Statistics in Non-Typical Cases

# Popstats Cannot Currently Calculate Parentage Statistics For The Identification Of Human Remains 

Reverse Parentage Testing

## Reverse Parentage Testing

## Applications

$>$ Unidentified remains
> Victims of Mass Disasters
> Crime Scene Evidence
> Kidnapped or Abandoned Babies

## REVERSE PARENTAGE INDEX BODY IDENTIFICATION

| ALLEGED | EVIDENCE | ALLEGED |
| :--- | :---: | :---: |
| MOTHER |  | FATHER |

$\longrightarrow \mathrm{A}$
$\longrightarrow B$
B


# Reverse Parentage Testing 

## Three genotypes:

- Alleged Mother
- Child (missing)
- Alleged Father


## Reverse Parentage Analysis

## Missing child scenario



# Reverse Parentage Index $\mathbf{R P I}=\mathbf{X} / \mathbf{Y}$ <br> Numerator 

$\mathrm{X}=$ is the probability that (1) a woman randomly selected from a population is type $A B$, and (2) a man randomly selected from a population is type CD, and (3) their child is type BC .

# Reverse Parentage Index <br> RPI = X / Y <br> Denominator 

$\mathrm{Y}=$ is the probability that (1) a woman randomly selected from a population and unrelated to missing child is type AB, (2) a man randomly selected from a population and unrelated to missing child is type CD, and (3) a child, randomly selected from a population is BC .

## Reverse Parentage Analysis

## Missing child scenario

Numerator


Probability $=2 p_{A} p_{B} \times 2 p_{C} p_{D} \times 0.5 \times 0.5$

## Reverse Parentage Analysis

## Missing child scenario Denominator

$2 p_{A} p_{B} \quad A B \quad C D \quad 2 p_{C} p_{D}$

$$
\text { (BC) } 2 p_{\mathrm{B}} \mathrm{p}_{\mathrm{c}}
$$

Probability $=2 p_{A} p_{B} \times 2 p_{C} p_{D} \times 2 p_{B} p_{C}$

## Reverse Parentage Analysis

## Missing child scenario

$$
\begin{aligned}
L R & =\frac{2 p_{A} p_{B} \times 2 p_{C} p_{D} \times 0.5 \times 0.5}{2 p_{A} p_{E} \times 2 p_{C} p_{D} \times 2 p_{B} p_{C}} \\
L R & =\frac{0.25}{2 p_{B} p_{C}}
\end{aligned}
$$

## Reverse Parentage Analysis

## Missing child scenario



## Reverse Parentage Analysis Missing child scenario Numerator



Probability $=2 p_{A} p_{B} \times p_{C}^{2} \times 0.5 \times 1$

## Reverse Parentage Analysis

Missing child scenario Denominator
$2 p_{A} p_{B} \quad A B \quad C p_{C}{ }^{2}$ (BC) $2 p_{B} p_{c}$
Probability $=2 p_{A} p_{B} \times p_{C}{ }^{2} \times 2 p_{B} p_{C}$

# Reverse Parentage Analysis <br> <br> Missing child scenario 

 <br> <br> Missing child scenario}

$$
\begin{aligned}
& L R=\frac{p_{A} p_{B} \times p_{C}^{2} \times 0.5 \times 1}{p_{A} p_{B} \times p_{C}^{2} \times 2 p_{B} p_{C}} \\
& L R=\frac{0.5}{2 p_{B} p_{C}}
\end{aligned}
$$

## Reverse Parentage Analysis

## Missing child scenario



## Reverse Parentage Analysis Missing child scenario Numerator



Probability $=p_{B}{ }^{2} \times p_{C}{ }^{2} \times 1 \times 1$

# Reverse Parentage Analysis 

## Missing child scenario

 Denominator
(BC) $2 \mathrm{p}_{\mathrm{B}} \mathrm{P}_{\mathrm{C}}$
Probability $=p_{B}^{2} \times p_{C}^{2} \times 2 p_{B} p_{C}$

# Reverse Parentage Analysis <br> <br> Missing child scenario 

 <br> <br> Missing child scenario}

$$
\begin{aligned}
L R & =\frac{p_{B}^{2} \times p_{C}^{2} \times 1 \times 1}{p_{B}^{2} \times p_{C}^{2} \times 2 p_{B} p_{C}} \\
L R & =\frac{1}{2 p_{B} p_{C}}
\end{aligned}
$$

# Having both parents to test in a reverse parentage test is indeed a luxury 

Often, we are limited to one parent or possibly even siblings to attempt an identification

Single parent cases revert statistically to the "non-maternal" format we discussed earlier

## Thank you!

