Popstats Parentage Statistics Strength of Genetic Evidence In Parentage Testing

Arthur J. Eisenberg, Ph.D.

Director

DNA Identity Laboratory

UNT-Health Science Center

eisenber@hsc.unt.edu

PATERNITY TESTING

MOTHER

ALLEGED FATHER

Two alleles for each autosomal genetic marker

Typical Paternity Test

Two possible outcomes of test:

Inclusion

The obligate paternal alleles in the child all have corresponding alleles in the *Alleged Father*

Exclusion

The obligate paternal alleles in the child DO NOT have corresponding alleles in the *Alleged Father*

Exclusion

Results

The Tested Man is Excluded as the Biological Father of the Child in Question

Inclusion

Results

The Tested Man *Cannot be Excluded* as the Biological Father of the Child in Question

Several Statistical Values are Calculated to Assess the Strength of the Genetic Evidence

Language of Paternity Testing

PI Paternity Index

CPI Combined Paternity Index

W Probability of Paternity

PE Probability of Exclusion

Paternity Index summarizes information provided by genetic testing

- Likelihood Ratio
- Probability that some event will occur under a set of conditions or assumptions
- Divided by the probability that the same event will occur under a set of different mutually exclusive conditions or assumptions

Paternity Index

- Observe three types from a man, a woman, and a child
- Assume true trio the man and woman are the true biologic parents of child
- Assume false trio woman is the mother, man is not the father
- In the false trio, the child's father is a man of unknown type, selected at random from population (unrelated to mother and tested man)

- In paternity testing, the event is observing three phenotypes, those of a woman, man and child.
- The assumptions made for calculating the numerator (X) is that these three persons are a "true trio".
- For the denominator (Y) the assumptions is

Paternity Analysis Hypothetical case

DNA Analysis Results in Three Genotypes

Mother (AB)

Child (BC)

Alleged Father (CD)

Paternity Analysis

An AB mother and a CD father can have four possible offspring:

AC, AD, BC, BD

PI determination in hypothetical DNA System

PI = X / Y

Numerator

X = is the probability that (1) a woman randomly selected from a population is type AB, and (2) a man randomly selected from a population is type CD, and (3) their child is type BC.

PI determination in hypothetical DNA System

PI = X / Y

Denominator

Y = is the probability that (1) a woman randomly selected from a population is type AB, (2) a man randomly selected and unrelated to either mother or child is type CD, and (3) the woman's child, unrelated to the randomly selected man is BC.

When mating is random, the probability that the untested alternative father will transmit a specific allele to his child is equal to the allele frequency in his race.

We can now look into how to actually calculate a Paternity Index

Hypothetical DNA Example

Numerator

Person Type

Mother AB

Child BC

Alleged Father CD

In order to explain this evidence Calculate Probability that

- a) Woman randomly selected from population is type AB
- b) Man randomly selected from population is type CD, and
- c) Their child is type BC

Paternity Analysis Paternity Index

Numerator

Probability = $2p_Ap_B \times 2p_Cp_D \times 0.5 \times 0.5$

Hypothetical DNA Example

Second Hypothesis
Denominator

Person Type

Mother AB

Child BC

Alleged Father CD

In order to explain this evidence Calculate Probability that

- a) Woman randomly selected from population is type AB
- b) An alternative man randomly selected from population is type CD, and
- c) The woman's child, fathered by random man, is type BC

Paternity Analysis Paternity Index Denominator

Probability = $2p_Ap_B \times 2p_Cp_D \times 0.5 \times p_C$

Paternity Analysis Paternity Index

PI =
$$2p_{A}p_{B} \times 2p_{C}p_{D} \times 0.5 \times 0.5$$
PI =
$$2p_{A}p_{B} \times 2p_{C}p_{D} \times 0.5 \times p_{C}$$
0.5
PI =
$$p_{C}$$

Hypothetical DNA Example

Probability Statements

Person Type

Mother AB

Child BC

Alleged Father CD

One might say (Incorrectly)

- a) Numerator is probability that tested man is the father, and
- b) Denominator is probability that he is not the father

Hypothetical DNA Example

Probability Statement

<u>Person</u> <u>Type</u>

Mother AB

Child BC

Alleged Father CD

A Correct statement is

- a) Numerator is probability of observed genotypes, given the tested man is the father, and
- b) Denominator is probability of observed genotypes, given a random man is the father.

Incorrect Verbal Expression of the Paternity Index?

It is (X/Y) times more likely the tested man was the true biological father than an untested random man was the father

Correct Verbal Expression of the Paternity Index?

It is (X/Y) times more likely to see the genetic results if the tested man was the true biological father than if an untested random man was the father

or

There is (X/Y) times more support for the genetic results if the tested man was the true biological father than if an untested random man was the father

There are 15 possible combinations of genotypes for a paternity trio

Paternity Index

M and C share one allele and AF is homozygous for the obligatory allele

AF can only pass C allele Random Man has p chance of passing the C allele

$$PI = 1/p$$

Paternity Analysis Paternity Index

Numerator

Probability = $2p_A p_B \times p_C^2 \times 0.5 \times 1$

Paternity Analysis Paternity Index Denominator

Probability = $2p_A p_B \times p_C^2 \times 0.5 \times p_C$

Paternity Analysis Paternity Index

PI =
$$\frac{2p_{A}p_{B} \times p_{c}^{2} \times 0.5 \times 1}{2p_{A}p_{B} \times p_{c}^{2} \times 0.5 \times p_{C}}$$
PI =
$$\frac{1}{p_{C}}$$

Paternity Index

M and C share both alleles and AF is heterozygous with one of the obligatory alleles

M has a 1 in 2 chance of passing A or B allele

AF has a 1 in 2 chance of passing B allele

RM has (p + q) chance of passing the A or B alleles

PI = 0.5/(p+q)

Paternity Analysis Paternity Index

Numerator

Probability = $2p_Ap_B \times 2p_Bp_C \times 0.5_{(mA)} \times 0.5_{(fB)}$

Paternity Analysis Paternity Index Denominator

$$2p_Ap_B$$
 AB BC $2p_Bp_C$
 $0.5_A + 0.5_B$
 AB
 $probability =$
 $2p_Ap_B \times 2p_Bp_C \times (0.5_{(mA)} \times p_B + 0.5_{(mB)} \times p_A)$

Paternity Analysis Paternity Index

PI =
$$\frac{2p_{A}p_{B} \times 2p_{B}p_{C} \times 0.5_{(mA)} \times 0.5_{(fB)}}{2p_{A}p_{B} \times 2p_{B}p_{C} \times (0.5_{(mB)} \times p_{A} + 0.5_{(mA)} \times p_{B})}$$
PI =
$$\frac{0.25}{0.5p_{A} + 0.5p_{B}}$$
PI =
$$\frac{0.5}{p_{A} + p_{B}}$$

Paternity Index

M and C share both alleles and AF is heterozygous with both of the obligatory alleles

M has a 1 in 2 chance of passing A or B allele AF has a 1 in 2 chance of passing A or B allele RM has (p + q) chance of passing the A or B alleles

$$\mathbf{PI} = 1/(\mathbf{p} + \mathbf{q})$$

Paternity Analysis Paternity Index

Numerator

Probability =

$$2p_Ap_B \times 2p_Ap_B \times (0.5_{(mA)} \times 0.5_{(fB)} + 0.5_{(mB)} \times 0.5_{(fA)})$$

Paternity Analysis Paternity Index Denominator

$$2p_Ap_B$$
 AB $2p_Ap_B$
 $0.5_A + 0.5_B$
 AB $2p_Ap_B$
 AB $2p_A$
 AB

Paternity Analysis Paternity Index

PI =
$$\frac{2p_{A}p_{B} \times 2p_{A}p_{B} \times (0.5_{(mA)} \times 0.5_{(fB)} + 0.5_{(mB)} \times 0.5_{(fA)})}{2p_{A}p_{B} \times 2p_{A}p_{B} \times (0.5_{(mB)} \times p_{A} + 0.5_{(mA)} \times p_{B})}$$
PI =
$$\frac{0.5}{0.5p_{A} + 0.5p_{B}}$$
PI =
$$\frac{1}{p_{A} + p_{B}}$$

Paternity Index

M and C share both alleles and AF is homozygous with one of the obligatory alleles

M has a 1 in 2 chance of passing A or B allele

AF can only pass the B allele

RM has (p + q) chance of passing the A or B alleles

PI = 1/(p+q)

Paternity Analysis Paternity Index

Numerator

Probability = $2p_A p_B \times p_B^2 \times 0.5_{(mA)} \times 1_{(fB)}$

Paternity Analysis Paternity Index Danaminatan

Denominator

$$2p_{A}p_{B} \qquad B \qquad p_{B}^{2}$$

$$0.5_{A} + 0.5_{B} \qquad AB$$

$$probability =$$

$$2p_{A}p_{B} \times p_{B}^{2} \times (0.5_{(mA)} \times p_{B} + 0.5_{(mB)} \times p_{A})$$

Paternity Analysis Paternity Index

PI =
$$\frac{2p_{A}p_{B} \times p_{b}^{2} \times 0.5_{(mA)} \times 1_{(fB)}}{2p_{A}p_{B} \times p_{b}^{2} \times (0.5_{(mB)} \times p_{A} + 0.5_{(mA)} \times p_{B})}$$

$$PI = \frac{0.5}{0.5p_{A} + 0.5p_{B}}$$

$$PI = \frac{1}{p_{A} + p_{B}}$$

PI Formulas

Single locus, no null alleles, low mutation rate, codominance

$\underline{\mathbf{M}}$	<u>C</u>	<u>AF</u>	Numerator	Denominator	<u>PI</u>
A	A	AB	0.5	a	0.5/a
A	AB	AB	0.5	a	0.5/a
A	AB	BC	0.5	a	0.5/a
AB	A	AB	0.25	0.5a	0.5/a
AB	A	AC	0.25	0.5a	0.5/a
BC	AB	AB	0.25	0.5a	0.5/a
BC	AB	AC	0.25	0.5a	0.5/a
BD	AB	AC	0.25	0.5a	0.5/a

PI Formulas

Single locus, no null alleles, low mutation rate, codominance

$\underline{\mathbf{M}}$	<u>C</u>	<u>AF</u>	Numerator	Denominator	<u>PI</u>
A	A	A	1	a	1/a
AB	A	A	0.5	0.5a	1/a
В	AB	A	1	a	1/a
BC	AB	A	0.5	0.5a	1/a

PI Formulas

Single locus, no null alleles, low mutation rate, codominance

M C AF Numerator Denominator PI AB AB AC 0.25 0.5(a+b) 0.5/(a+b)

PI Formulas

Single locus, no null alleles, low mutation rate, codominance

$\underline{\mathbf{M}}$	<u>C</u>	<u>AF</u>	Numerator	Denominator	<u>PI</u>
AB	AB	A	0.5	0.5(a+b)	1/(a+b)
AB	AB	AB	0.5	0.5(a+b)	1/(a+b)

Combined Paternity Index

- When multiple genetic systems are tested, a PI is calculated for each system.
- This value is referred to as a System PI.
- If the genetic systems are inherited independently, the Combined Paternity Index (CPI) is the product of the System PI's

Combined Paternity Index

What "is" the CPI?

- The CPI is a measure of the strength of the genetic evidence.
- It indicates whether the evidence fits better with the hypothesis that the man is the father or with the hypothesis that someone else is the father.

Combined Paternity Index

- The theoretical range for the CPI is from 0 to infinity
- A CPI of 1 means the genetic tests provides no information
- A CPI less than 1; the genetic evidence is more consistent with non-paternity than paternity.
- A CPI greater than 1; the genetic evidence supports the assertion that the tested man is the father.

- The probability of paternity is a measure of the strengths of one's belief in the hypothesis that the tested man is the father.
- The correct probability must be based on all of the evidence in the case.
- The non-genetic evidence comes from the testimony of the mother, tested man, and other witnesses.
- The genetic evidence comes from the DNA paternity test.

• The probability of paternity (W) is based

• The prior probability of paternity is the strength of one's belief that the tested man is the father based only on the non-genetic evidence.

Probability of Paternity (W) =
$$\frac{\text{CPI x P}}{[\text{CPI x P} + (1 - P)]}$$

P = Prior Probability; it is a number greater than 0 and less than or equal to 1. In many criminal proceedings the Probability of Paternity is not admissible. In criminal cases, the accused is presumed innocent until proven guilty. Therefore, the defense would argue that the Prior Probability should be 0. You cannot calculate a posterior Probability of Paternity with a Prior Probability of 0.

• In the United States, the court system has made the assumption that the prior probability is equal to 0.5. The argument that is presented is that the tested man is either the true father or he is not. In the absence of any knowledge about which was the case, it is reasonable to give these two possibilities equal prior probabilities.

With a prior probability of 0.5, the Probability of Paternity (W) =

$$\frac{\text{CPI x 0.5}}{[\text{CPI x 0.5} + (1 - 0.5)]}$$

Posterior Odds in Favor of Paternity

Posterior Odds = CPI x Prior Odds

Prior Odds = P / (1 - P)

Posterior Odds in Favor of Paternity =

CPI x [P / (1 - P)]

If the prior probability of paternity is 0.7, then the prior odds favoring paternity is 7 to 3. If a paternity test is done and the CPI is 10,000, then the Posterior Odds in Favor of Paternity =

 $10,000 \times (0.7 / 0.3) = 23,333$

Posterior Odds in Favor of Paternity = 23,333 to 1

- The probability of exclusion (PE) is defined as the probability of excluding a random individual from the population given the alleles of the child and the mother.
- The genetic information of the tested man is not considered in the determination of the probability of exclusion

• The probability of exclusion (PE) is equal to the frequency of all men in the population who do not contain an allele that matches the obligate paternal allele of the child.

$$PE = 1 - (a^2 + 2ab)$$

a = frequency of the allele the child inherited from the biological father (obligate paternal allele). The frequency of the obligate allele is determined for each of the major racial groups, and the most common frequency is used in the calculation.

 $(a^2 + 2ab) = Probability of Inclusion$

Probability of Inclusion is equal to the frequency of all men in the population who contain an allele that matches the obligate paternal allele of the child.

PE = 1 - Probability of Inclusion

$$PE = 1 - (a^2 + 2ab)$$

b = sum of the frequency of all alleles other than the obligate paternal allele.

$$b = (1 - a)$$

$$PE = 1 - [a^{2} + 2a(1 - a)]$$

$$PE = 1 - [a^{2} + 2a - 2a^{2}]$$

$$PE = 1 - [2a - a^{2}]$$

$$PE = 1 - 2a + a^{2}$$

$$PE = (1 - a)^{2}$$

If the Mother and Child are both phenotype AB, men who cannot be excluded are those who could transmit either an A or B allele (or both). In this case the:

$$PE = [1 - (a + b)]^2$$

Combined Probability of Exclusion

The individual Probability of Exclusion is calculated for each of the genetic systems (loci) analyzed. The overall Probability of Excluding (CPE) a falsely accused man in a given case equals:

$$1 - [(1 - PE_1) \times (1 - PE_2) \times (1 - PE_3)... \times (1 - PE_N)]$$

	M	C	AF	Allele Frequency
D3S1358	14	15p	15	15 = 0.2463
(3p)	17	17m	16	
HUMvWA31	16	17m	18	18 = 0.2219
(12p13.3 - p13.2)	17	18p	20	
FGA (4q28)	22	22	22 24	22 = 0.1888

	M	C	AF	PI Formula
D3S1358	14	15p	15	0.5/a
(3p)	17	17m	16	
HUMvWA31	16	17m	18	0.5/a
(12p13.3 - p13.2)	17	18p	20	
FGA (4q28)	22	22	22 24	0.5/a

	M	С	AF	Paternity Index
D3S1358	14	15p	15	2.03
(3p)	17	17m	16	
HUMvWA31	16	17m	18	2.25
(12p13.3 - p13.2)	17	18p	20	
FGA (4q28)	22	22	22 24	2.65

	M	C	AF	PE Formula
D3S1358	14	15p	15	$(1-a)^2$
(3p)	17	17m	16	
HUMvWA31	16	17m	18	$(1-a)^2$
(12p13.3 - p13.2)	17	18p	20	
FGA (4q28)	22	22	22 24	$(1-a)^2$

	M	C	AF	PE
D3S1358	14	15p	15	0.5680
(3p)	17	17m	16	
HUMvWA31	16	17m	18	0.6054
(12p13.3 - p13.2)	17	18p	20	
FGA (4q28)	22	22	22 24	0.6580

	M	C	AF	Allele Frequency
D8S1179	12	12m	15	16 = 0.0128
(8)	14	16p	16	
D21S11	28	28m	28	32 = 0.0153
(21q11.2 - q21)	30	32p	32	
D18S51	15	13p	13	13 = 0.1224
(18q21.3)	19	15m	18	

	M	С	AF	PI Formula
D8S1179	12	12m	15	0.5/a
(8)	14	16p	16	
D21S11	28	28m	28	0.5/a
(21q11.2 - q21)	30	32p	32	
D18S51	15	13p	13	0.5/a
(18q21.3)	19	15m	18	

	M	С	AF	Paternity Index
D8S1179	12	12m	15	39.06
(8)	14	16p	16	
D21S11	28	28m	28	32.68
(21q11.2 - q21)	30	32p	32	
D18S51	15	13p	13	4.08
(18q21.3)	19	15m	18	

	M	С	AF	PE Formula
D8S1179	12	12m	15	$(1 - a)^2$
(8)	14	16p	16	
D21S11	28	28m	28	$(1 - a)^2$
(21q11.2 - q21)	30	32p	32	
D18S51	15	13p	13	$(1 - a)^2$
(18q21.3)	19	15m	18	

	M	C	AF	PE
D8S1179	12	12m	15	0.9745
(8)	14	16p	16	
D21S11	28	28m	28	0.9696
(21q11.2 - q21)	30	32p	32	
D18S51	15	13p	13	0.7701
(18q21.3)	19	15m	18	

	M	С	AF	Allele Frequency
D5S818 (5q21 - q31)	12	12	8 12	12 = 0.3538
D13S317	12	12	13	12 = 0.3087
(13q22 - q31)	13	13		13 = 0.1097
D7S820	7	8m	10	10 = 0.2906
(7q)	8	10p	11	

	M	С	AF	PI Formula
D5S818 (5q21 - q31)	12	12	8 12	0.5/a
D13S317 (13q22 - q31)	12 13	12 13	13	1/(a+b)
D7S820 (7q)	7 8	8m 10p	10 11	0.5/a

	M	С	AF	Paternity Index
D5S818 (5q21 - q31)	12	12	8 12	1.41
D13S317 (13q22 - q31)	12 13	12 13	13	2.39
D7S820 (7q)	7 8	8m 10p	10 11	1.72

	M	С	AF	PE Formula
D5S818 (5q21 - q31)	12	12	8 12	$(1 - a)^2$
D13S317 (13q22 - q31)	12 13	12 13	13	[1 –(a+b)] ²
D7S820 (7q)	7 8	8m 10p	10 11	$(1 - a)^2$

	M	С	AF	PE
D5S818 (5q21 - q31)	12	12	8 12	0.4175
D13S317 (13q22 - q31)	12 13	12 13	13	0.3382
D7S820 (7q)	7 8	8m 10p	10 11	0.5032

	M	C	AF	Allele Frequency
HUMCSF1PO (5q33.3 - q34)	8 12	8 12	12	8 = 0.0123 12 = 0.3251
HUMTPOX (2p23 - 2pter)	10 11	9p 10m	9	9 = 0.1232
HUMTH01 (11p15.5)	7 9	9	8 9	9 = 0.1650
D16S539 (16p24 - p25)	12 13	13	9 13	13 = 0.1634

	M	C	AF	PI Formula
HUMCSF1PO (5q33.3 - q34)	8 12	8 12	12	1/(a+b)
HUMTPOX (2p23 - 2pter)	10 11	9p 10m	9	1/a
HUMTH01 (11p15.5)	7 9	9	8 9	0.5/a
D16S539 (16p24 - p25)	12 13	13	9 13	0.5/a

	M	С	AF	Paternity Index
HUMCSF1PO (5q33.3 - q34)	8 12	8 12	12	2.96
HUMTPOX (2p23 - 2pter)	10 11	9p 10m	9	8.12
HUMTH01 (11p15.5)	7 9	9	8 9	3.03
D16S539 (16p24 - p25)	12 13	13	9 13	3.06

	M	C	AF	PE Formula
HUMCSF1PO (5q33.3 - q34)	8 12	8 12	12	[1 –(a+b)] ²
HUMTPOX (2p23 - 2pter)	10 11	9p 10m	9	$(1 - a)^2$
HUMTH01 (11p15.5)	7 9	9	8 9	$(1 - a)^2$
D16S539 (16p24 - p25)	12 13	13	9 13	$(1 - a)^2$

	M	C	AF	PE
HUMCSF1PO (5q33.3 - q34)	8 12	8 12	12	0.4390
HUMTPOX (2p23 - 2pter)	10 11	9p 10m	9	0.7687
HUMTH01 (11p15.5)	7 9	9	8 9	0.6972
D16S539 (16p24 - p25)	12 13	13	9 13	0.6999

Paternity Trio P-54534 13 Core CODIS Loci

Combined Paternity Index 81,424,694

Probability of Paternity 99.99999%

Probability of Exclusion 99.99999%

Popstats Parentage Calculations

PopStats can only do basic parentage statistics!

Popstats Can only Calculate with a Complete Trio (Mother, Child, Alleged Father)

In the Popstats Parentage Case type, only the pure parentage calculation is performed. Currently there is no reverse parentage or single-parent statistics calculation implemented in Popstats. Three DNA profiles are looked at in the Parentage case type: that of the known parent (KP), the child (C), and the alleged parent (AP).

Because the known parent and child relationship is assumed certain, at least one band/allele of the known parent and child must match at every locus.

Popstats compares the child and alleged parent profiles at each locus, and computes three statistical values: Parentage Index PI), Probability of Exclusion (PE), and Probability of Parentage (W).

The Parentage Index is a likelihood ratio based on two conditional probabilities: the probability of parentage given that the alleged parent is the biological parent; and the probability that the alleged parent is not the biological parent. The general formula is as follows:

$$PI = \frac{Probability \text{ of the genetic observations conditional on parentage}}{Probability \text{ of the genetic observations conditional on non-parentage}}$$

The exact formula of PI in terms of band/allele occurrence frequencies depends on the obligate parental band/allele and the homozygosity of the alleged parent.

The Probability of Parentage (W) is based upon Bayes' Theorem. It provides a method for determining a posterior probability for parentage based upon the DNA profiles of the known parent, child and alleged parent. To perform the Probability of Parentage calculation, the user must assign a value for the prior probability that the alleged parent is the true biological parent. The equation used to calculate W is as follows:

$$W = \frac{PI'(prior \ probability)}{PI'(prior \ probability) + [1 - (prior \ probability)]}$$

Therefore, the parentage probability of a parentage test for a locus in a population group is

$$W_{\text{locus}} = \frac{(\text{PI}_{\text{locus}}) \cdot P_{\text{prior}}}{(\text{PI}_{\text{locus}}) \cdot P_{\text{prior}} + (1 - P_{\text{prior}})}$$

where $\frac{P_{\text{prior}}}{r}$ is the prior probability. The prior probability is user configurable and its default value is set to the neutral value of 0.5. That is, we assume there is a 50% probability that the alleged parent is the biological parent of the child and a 50% probability that the alleged parent is not the biological parent of the child.

The Probability of Exclusion (PE) is defined as the probability of excluding a random individual from the population, given the alleles of the child and the known parent.

The DNA profile of the alleged parent is not considered in calculating the PE. The Probability of Exclusion is equal to the frequency of all the people in the population who do not contain an allele that matches the oblique paternal allele of the child.

If the phenotypes of the known parent, child, and alleged parent do not match at one locus, then "inconclusive" is declared for both the locus and the entire parentage test. If the phenotypes of the known parent, child, and alleged parent do not match at two or more loci, then "no match" is declared for the entire parentage test. The following table lists all the "matched" cases and their corresponding formulae for PI and PE.

Where

 \hat{p}_{i} is defined to be $\hat{p}_{i} = \max\{p_{\min}, p_{i}\}$, p and q is the band/allele occurrence frequency of the child

 p_{\min} is the user-configured minimum frequency

E is the factor to be used as a conservative correction in PI for the RFLP homozygotes in the alleged parent's profile.

The default value for E is 0.5.

The parentage index (PI), probability of exclusion (PE), and probability of parentage, W, are

$$PI = \prod_{loci} (PI_{locus})$$

$$PE = 1 - \prod_{loci} [1 - (PE_{locus})]$$

$$W = \frac{(PI) \cdot P_{prior}}{(PI) \cdot P_{prior}} + (1 - P_{prior})$$

Nin. Popstats 5.3 - [Parentage Statistics]

File Edit

Profile Case Type Configuration Window

Help

CAU	BLK
	-

Locus	PE(%)	PI	W(%)	Match?
D3S1358	5.6806E+01	2	6.6997E+01	Yes
VWA	6.0544E+01	2	6.9262E+01	Yes
FGA	6.5805E+01	3	7.2590E+01	Yes
D8S1179	9.7456E+01	39	9.7504E+01	Yes
D21S11	9.6963E+01	33	9.7031E+01	Yes
D18S51	7.7001E+01	4	8.0321E+01	Yes
D5S818	4.1745E+01	1	5.8555E+01	Yes
D13S317	3.3826E+01	2	7.0502E+01	Yes
D7S820	5.0325E+01	2	6.3243E+01	Yes
CSF1P0	4.3904E+01	3	7.4772E+01	Yes
TPOX	7.6878E+01	8	8.9031E+01	Yes
TH01	6.9722E+01	3	7.5188E+01	Yes
D16S539	6.9990E+01	3	7.5369E+01	Yes
Total	(1.000E+02	81,800,000	(1.000E+02) Yes

Min. Popstats 5.3 - [Parentage Statistics] File Edit Profile Case Type Configuration Window Help P BLK CAU PE(%) PΙ W(%)Match? Locus 6.3251E+01 D3S1358 5.0339E+01 7.4632E+01 4 7.8604E+01 VWA

FGA	6.0062E+01	2	6.8966E+01	Yes
D8S1179	9.1317E+01	11	9.1844E+01	Yes
D21S11	9.7220E+01	36	9.7276E+01	Yes
D18S51	8.9189E+01	9	8.9993E+01	Yes
D5S818	4.1525E+01	1	5.8439E+01	Yes
D13S317	1.5296E+01	2	6.2154E+01	Yes
D7S820	4.5725E+01	2	6.0694E+01	Yes
CSF1P0	3.7736E+01	3	7.2166E+01	Yes
TPOX	6.6945E+01	6	8.4617E+01	Yes
TH01	7.3068E+01	3	7.7495E+01	Yes
D16S539	6.9706E+01	3	7.5177E+01	Yes
Total	1.000E+02	26,950,000	1.000E+02	Yes

Yes:

Yes

Popstats 5.3 - [Parentage Statistics]

SEH

	CAU		BLK				
Locus	PE(%)	Pl	W(%)	Match?			
D3S1358	4.1809E+01	1	5.8589E+01	Yes			
VWA	6.6016E+01	3	7.2727E+01	Yes			
FGA	7.2386E+01	3	7.7018E+01	Yes			
D8S1179	9.4829E+01	19	9.5021E+01	Yes			
D21S11	9.7397E+01	38	9.7447E+01	Yes			
D18S51	7.7828E+01	4	8.0932E+01	Yes			
D5S818	4.6690E+01	2	6.1222E+01	Yes			
D13S317	4.3891E+01	3	7.4766E+01	Yes			
D7S820	5.3773E+01	2	6.5215E+01	Yes			
CSF1P0	4.0107E+01	3	7.3169E+01	Yes			
TPOX	8.4034E+01	12	9.2311E+01	Yes			
TH01	6.6357E+01	3	7.2950E+01	Yes			
D16S539	7.0141E+01	3	7.5472E+01	Yes			
Total	1.000E+02	93,130,000	1.000E+02	Yes			

Page 1

1 of 1

Total:13

100%

13 of 52

September 22, 2003

Popstats 5.3

Parentage Calculations Part 1

Fixed Bin

Database: C:\CODISII\CODIS\POPDATA\FBI\STR

User Name: eisenber

Boundaries: 0 2000 10000 Windows: > 0.025 <> 0.025 <> 0.080

Locus	Known P-54534					Equation Number	Match?	
D3S1358	14	17	15 op	17	15	16	2	Yes
VWA	16	17	17	18 op	18	20	4	Yes
FGA	22		22 op		22	24	2	Yes
D8S1179	12	14	12	16 op	15	16	4	Yes
D21S11	28	30	28	32 op	28	32	4	Yes
D18S51	15	19	13 op	15	13	18	2	Yes
D5S818	12		12 op		8	12	2	Yes
D138317	12	13	12 op	13 op	13		6	Yes
D78820	7	8	8	10 op	10	11	4	Yes
CSF1P0	8	12	8 op	12 op	12		6	Yes
TPOX	10	11	9 op	10	9		1	Yes
TH01	7	9	9 op		8	9	2	Yes
D168539	12	13	13 op		9	13	2	Yes

op = obligate parentage allele

Popstats Help Equation Numbers

<u>Parentage Case</u>

<u>Case 1</u>

Case 2

Case 3

<u>Case 4</u>

<u>Case 5</u>

<u>Case 6</u>

Case 7

Parentage - Case 1

For RFLP/VNTR loci:

$$PI_{locus} = \frac{E}{\hat{p}}, PE_{locus} = (1 - \hat{p})^2$$

For PCR loci:

$$PI_{locus} = \frac{1}{\hat{p}}, PE_{locus} = (1 - \hat{p})^2$$

TPOX

Parentage - Case 2

$$PI_{locus} = \frac{0.5}{\hat{p}}, PE_{locus} = (1 - \hat{p})^2$$

D3	D3S1358 F0		FGA	FGA I		D18S51		r	TH01		
	C AF 15 op 9						13		C AF 9 op 8 9		

Parentage - Case 3

For VNTR/RFLP loci:

$$\mathrm{PI}_{\mathrm{locus}} = \frac{E}{q}, \; \mathrm{PE}_{\mathrm{locus}} = (1-q)^2$$

For PCR loci:

$$PI_{locus} = \frac{1}{q}$$
, $PE_{locus} = (1 - q)^2$

$$PI_{locus} = \frac{0.5}{q}, PE_{locus} = (1-q)^2$$

	VWA		D	D8S1179		Ι	D21S11			D7S820		
M	C	AF	M	C	AF	M	C	AF	M	C	AF	
16	17	18	12	12	15	28	28	28	7	8	10	
17	18 o	p 20	14	16 op	16	30	32 o	p 32	8	10	op 11	

$$PI_{box} = \frac{1}{p + q}, PE_{box} = [1 - (p + q)]^2$$

Parentage - Case 6

For VNTR/RFLP loci:

$$PI_{bous} = \frac{E}{p + q}, PE_{bous} = [1 - (p + q)]^{2}$$

For PCR loci:

$$PI_{bcus} = \frac{1}{p + q}, PE_{bcus} = [1 - (p + q)]^2$$

CSF1PO M C AF 8 8 op 12 12 12 op

$$PI_{locus} = \frac{0.5}{p + q}, PE_{locus} = [1 - (p + q)]^2$$

Population Group: BLK

	Probability	Parentage	Probability	
Locus	of Exclusion	Index	of Parentage	Match?
D3S1358	5.0339E+01 %	1.7212E+00	6.3251 E +01 %	Yes
WA	7.4632E+01 %	3.6738E+00	7.8604E+01 %	Yes
FGA	6.0062 E +01 %	2.222 E+ 00	6.8966E+01 %	Yes
D8S1179	9.1317E+01 %	1.1261E+01	9.1844E+01 %	Yes
D21S11	9.7220 E+ 01 %	3.5714E+01	9.7276E+01 %	Yes
D18551	8.9189E+01 %	8.9928E+00	8.9993E+01 %	Yes
D5S818	4.1525E+01 %	1.4061E+00	5.8439E+01 %	Yes
D13S317	1.5296E+01 %	1.6423E+00	6.215 4E +01 %	Yes
D78820	4.5725E+01 %	1.5442E+00	6.0694E+01 %	Yes
CSF1P0	3.7736E+01 %	2.5927E+00	7.2166E+01 %	Yes
TPOX	6.6945E+01 %	5.5006 E+ 00	8.4617E+01 %	Yes
TH01	7.3068E+01 %	3.4435E+00	7.7495E+01 %	Yes
D168539	6.9706E+01 %	3.0285 E+ 00	7.5177E+01 %	Yes
Total	1.000E+02 %	2.695E+07	1.000E+02 %	Yes

Population Group: SEH

Locus	Probability of Exclusion	Parentage Index	Probability of Parentage	Match?
D3S1358	4.1809E+01 %	1.4148E+00	5.8589E+01 %	Yes
VWA	6.6016E+01 %	2.6667 E +00	7.2727E+01 %	Yes
FGA	7.2386E+01 %	3.3512 E +00	7.7018E+01 %	Yes
D8S1179	9.4829E+01 %	1.908 4E +01	9.5021 E+01 %	Yes
D21S11	9.7397E+01 %	3.8168 E +01	9.7447E+01 %	Yes
D18S51	7.7828E+01 %	4.2445E+00	8.0932 E+ 01 %	Yes
D58818	4.6690E+01 %	1.5788 E +00	6.1222 E+ 01 %	Yes
D13S317	4.3891E+01 %	2.9630 E +00	7.4766E+01 %	Yes
D78820	5.3773E+01 %	1.8748E+00	6.5215E+01 %	Yes
CSF1P0	4.0107E+01 %	2.7270 E +00	7.3169E+01 %	Yes
TPOX	8.4034E+01 %	1.2005E+01	9.2311 E+01 %	Yes
TH01	6.6357E+01 %	2.6969 E +00	7.2950E+01 %	Yes
D168539	7.0141E+01 %	3.0769E+00	7.5472E+01 %	Yes
Total	(1.000E+02 %)	9.313E+07	1.000E+02 %	

Conservative Practice for Handling Single Paternal Bands = 0.5 Prior probabilty = 0.5

Popstats Cannot Correctly Calculate Parentage Statistics in Non-Typical Cases

Parentage Statistics in Non-Typical Cases

- Mutation/Recombination Tested man does not match at a single genetic locus
- Tested Man is not the biological father but is related to the biological father (brother, son, or father)

Popstats 5.3 - [Parentage Statistics]

File Edit

Profile

Case Type Configuration Window

Help

LAL

BLK

Locus	PE(%)	Pl	W(%)	Match?
D3S1358	7.3891E+01	4	7.8076E±01	Yes
VWA				No
FGA	6.8310E+01	3	7.4239E+U1	Yes
D8S1179	7.9263E+01	5	8.2008E+01	Yes
D21S11	6.7060E+01	3	7.3411E+01	Yes
D18S51	4.5011E+01	3	7.5239E+01	Yes
D5S818	3.4775E+01	2	7.0907E+01	Yes
D13S317	8.1090E+01	5	8.3403E+01	Yes
D7S820	6.3680E+01	2	7.1225E+01	Yes
CSF1P0	4.3904E+01	1	5.9709E+01	Yes
TPOX	4.0804E+00	1	5.5617E+01	Yes
TH01	6.9722E+01	3	7.5188E+01	Yes
D16S539	5.2955E+01	2	6.4742E+01	Yes
Total	1.000E+02	122,900	1.000E+02	Inconclusive

Popstats 5.3

Parentage Calculations Part 1

Fixed Bin

Database: C:\CODISII\CODIS\POPDATA\FBI\STR

User Name: eisenber

Boundaries: 0 2000 10000

Windows: > 0.025 <> 0.025 <> 0.080

Locus	Known P-41411	Parent -M	Child P-41411-0	:	Allege P-4141	ed Parent 1-AF	Equation Number	Match?
D3S1358	14	15	14 op		14	15	2	Yes
VWA	18	19	16	19	15	17		No
FGA	23	24	21 op	24	21	23	2	Yes
D8S1179	10	14	14	15 op	13	15	4	Yes
D21S11	28	30	29 op	30	28	29	2	Yes
D18S51	14	17	14 op	17 op	14		6	Yes
D5S818	11	13	11 op		11		1	Yes
D13S317	10	12	8 op	12	8	11	2	Yes
D78820	9	10	9	11 op	8	11	4	Yes
CSF1P0	8	12	8 op	12 op	10	12	7	Yes
TPOX	8	11	8 op	11 op	8	11	5	Yes
TH01	7		7	9 op	6	9	4	Yes
D16S539	12		11 op	12	11	12	2	Yes

Popstats 5.3

Parentage Calculations Part 2

Fixed Bin

Database:

C:\CODISII\CODIS\POPDATA\FBI\STR

User Name:

eisenber

Boundaries:

10000

Windows:

0.025 <> 0.025 0.080 \diamond

2000

Population Group: CAU

Locus	Probability of Exclusion	Parentage Index	Probability of Parentage	Match?
D3S1358	7.3891E+01 %	3 5613E+00	7.8076E+01 %	Yes
VWA				No
FGA	6.8310 E+ 01 %	2.8818 E +00	7.4239E+01 %	Yes
D8S1179	7.9263E+01 %	4.5579E+00	8.2008 E+ 01 %	Yes
D21S11	6.7060E+01 %	2.7609E+00	7.3411E+01 %	Yes
D18S51	4.5011E+01 %	3.0386 E+ 00	7.5239E+01 %	Yes
D58818	3.4775E+01 %	2.4372E+00	7.0907E+01 %	Yes
D13S317	8.1090E+01 %	5.0251E+00	8.3403E+01 %	Yes
D78820	6.3680E+01 %	2.4752E+00	7.1225E+01 %	Yes
CSF1P0	4.3904E+01 %	1.4819E+00	5.9709E+01 %	Yes
TPOX	4.0804E+00 %	1.2531E+00	5.5617E+01 %	Yes
TH01	6.9722E+01 %	3.0303E+00	7.5188E+01 %	Yes
D16S539	5.2955E+01 %	1.8362E+00	6.4742E+01 %	Yes

Case Scenario

A mother, child, and alleged father have been analyzed with the 13 core CODIS STR loci, the alleged father cannot be excluded at 12 loci, however, there is a single non-matching system (single inconsistency), the alleged father does not contain the obligate paternal allele found in the child at one locus.

Three possible explanations can be considered:

- 1. The alleged father is excluded as the biological father of the child and is unrelated to the true biological father.
- 2. A mutation or recombination event has occurred altering the allele inherited from the AF by the child.
- 3. The tested man is not the biological father, but is a 1st order relative of the true biological father, and shares the majority of alleles contributed to the child with the biological father.

Single Inconsistencies in Paternity Testing

- The American Association of Blood Banks, in their standards for parentage testing laboratories, has recognized that mutations are naturally occurring genetic events, and the mutation frequency at a given locus shall be documented (5.4.2).
- Standard 6.4.1 An opinion of nonpaternity shall not be rendered on the basis of an exclusion at a single DNA locus (single inconsistency).

Mutations in Paternity Testing The "Two Exclusion Rule"

• A single inconsistency is not sufficient to render an opinion of non-paternity, therefore, two inconsistencies have been traditionally considered genetic evidence to exclude a tested man and to issue a finding of non-paternity. This rule has been commonly applied in both serological systems and RFLP testing. However, since STR analysis often examines a battery of a dozen or more systems it is not unexpected to occasionally see two inconsistencies in cases were the tested man is the true biological father.

Mutations in Paternity Testing Calculating a Paternity Index

- In cases with a single non-matching system, the laboratory cannot simply ignore the inconsistent locus. A paternity index must be calculated for the inconsistent locus, which takes into account the possibility of a mutation.
- The paternity index for a single inconsistency seen in the 13 Core CODIS STR loci is a relatively small number. The system PI is greater than zero but substantially less than one.

Single Inconsistency Calculating a Paternity Index

Single Inconsistency Numerator

<u>Person</u> <u>Type</u>

Mother AB

Child BC

Alleged Father DE

In order to explain this evidence Calculate Probability that

- a) Woman randomly selected from population is type AB
- b) Man randomly selected from population is type DE, and
- c) Their child is type BC

Single Inconsistency Numerator

Person Type

Mother AB

Child BC

Alleged Father DE

In order to explain this evidence the numerator must calculate the probability that a man without a C allele will contribute a C allele

X = P(man without C allele will contribute C allele)

= P(contributed gene will mutate) x P(mutated gene will be a C)

Single Inconsistency Numerator

X = P(man without C will contribute C)

X = P(contributed gene will mutate)x P(mutated gene will be a C)

 μ = observed rate of mutations/meiosis for the locus

P(mutated gene will be a C) ie. Frequency of C allele = C

$$X = \mu \times c$$

Single Inconsistency Calculating a Paternity Index Numerator

Probability = $2ab \times 2de \times 0.5 \times \mu \times c$

Single Inconsistency Denominator

Person Type
Mother AB
Child BC
Alleged Father DE

In order to explain this evidence Calculate Probability that

- a) Woman randomly selected from population is type AB
- b) An alternative man randomly selected from population is type DE, and
- c) The woman's child, fathered by random man, is type BC

Single Inconsistency Denominator

Person Type

Mother AB

Child BC

Alleged Father DE

In order to explain this evidence the denominator must calculate the probability that the paternal allele is C and a random man would have a genotype inconsistent with paternity at this locus

- Y = P(paternal allele is C and random man has no C allele)
 - $\overline{= P(\text{paternal gene is } C) \times P(\text{random man has no } C \text{ allele})}$

Single Inconsistency Denominator

- Y = P(paternal allele is C and random man has no C allele)
 - = P(paternal gene is C) x P(random man has no C allele)
- P(paternal allele will be a \mathbb{C}) ie. Frequency of \mathbb{C} allele = \mathbb{C}
- P(random man has no C allele) = probability of exclusion
- The AABB does not use the case specific power of exclusion, but the mean power of exclusion (\overline{A})

$$Y = c \cdot \overline{A}$$

Single Inconsistency Calculating a Paternity Index Denominator

Probability = $2ab \times 2de \times 0.5 \times c \times \overline{A}$

Single Inconsistency Paternity Index

$$PI = \begin{cases} 2ab \times 2de \times 0.5 \times \mu \times 8 \\ 2ab \times 2de \times 0.5 \times \chi \times \overline{A} \end{cases}$$

$$PI = \frac{\mu}{\bar{A}}$$

Mutation Rates and Mean Power of Exclusion for CODIS Core STR Loci

Locus	Mutation Rate	Mean PE
CSF1PO	0.0013	0.455
TPOX	0.0005	0.537
TH01	0.0003	0.503
vWA	0.0034	0.667
D16S539	0.0013	0.590
D7S820	0.0013	0.570
D13S317	0.0017	0.582
D5S818	0.0017	0.566

Mutation Rates and Mean Power of Exclusion for CODIS Core STR Loci

Locus	Mutation Rate	Mean PE
FGA	0.0030	0.750
D8S1179	0.0019	0.554
D18S51	0.0032	0.740
D21S11	0.0010	0.791
D3S1358	0.0010	0.596

Mutation Rates and Mean Power of Exclusion for Additional STR Loci

Locus	Mutation Rate	Mean PE
F13AO1	0.0009	0.577
FESFPS	0.0007	0.620
F13B	0.0005	0.507
LIPOL	0.0012	0.451
PENTA E	0.0012	0.797

	M	С	AF	PI Formula
HUMCSF1PO	12 8	12 8	12 10	0.5/(a+b)]
HUMTPOX	11 8	11 8	11 8	1/(a+b)
HUMTH01	7	9p 7m	9	0.5/a
HUMvWA31	19 18	19m 16p	17 15	μ/A (0.0034/0.667)

	M	С	AF	Paternity Index
HUMCSF1PO	12 8	12 8	12 10	1.52
HUMTPOX	11 8	11 8	11 8	1.25
HUMTH01	7	9p 7m	9 6	3.03
HUMvWA31	19 18	19m 16p	17 15	0.005

	M	С	AF	PI Formula
D16S539	12	12m 11p	12 11	0.5/a
D7S820	10 9	11p 9m	11 10	0.5/a
D13S317	12 10	12m 8p	11 8	0.5/a
D5S818	13 11	11	11	1/a

	M	С	AF	Paternity Index
D16S539	12	12m 11p	12 11	1.84
D7S820	10 9	11p 9m	11 10	2.48
D13S317	12 10	12m 8p	11 8	5.03
D5S818	13 11	11	11	2.44

	M	С	AF	PI Formula
FGA	24 23	24m 21p	23 21	0.5/a
D18S51	17 14	17 14	14	1/(a+b)
D21S11	30 28	30m 29p	29 28	0.5/a
D3S1358	15 14	14	15 14	0.5/a
D8S1179	14 10	15p 14m	15 13	0.5/a

	M	С	AF	Paternity Index
FGA	24 23	24m 21p	23 21	2.88
D18S51	17 14	17 14	14	3.04
D21S11	30 28	30m 29p	29 28	2.76
D3S1358	15 14	14	15 14	3.56
D8S1179	14 10	15p 14m	15 13	4.56

Paternity Trio with a Single Inconsistency

12 STR without vWA

Combined Paternity Index Probability of Paternity

126,476 99.9992%

Single Inconsistency at vWA

Combined Paternity Index Probability of Paternity

632

99.84%

Single Inconsistencies in Paternity Testing

A mutation may be one of the possible explanations, the genetic results could suggest that a close relative (such as a brother, child or father) may be the biological father.

Single Inconsistencies in Paternity Testing

When considering brothers, on average a tested man and his brother will share 50% of their alleles... each can contribute these alleles in a random manner. This is also true between a father and son of a tested man.

Avuncular Index AI

We can use the development of a likelihood ratio to test two competing hypotheses:

H₁: The tested man's brother is the biological father of the child

H₂: A random man is the biological father of the child

Avuncular Index Numerator

H₁: The tested man's brother is the biological father of the child

$$\mathbf{H}_1 = \frac{\mathbf{X} + \mathbf{Y}}{2}$$

$$H_1 = 0.5 X + 0.5 Y$$

Avuncular Index Denominator

H₂: A random man is the biological father of the child

$$H_2 = Y$$

Avuncular Index AI

The Avuncular Index for any system can be written as:

$$AI = \frac{0.5 X + 0.5 Y}{Y}$$

$$AI = \frac{PI + 1}{2}$$

	M	С	AF	Paternity Index	Avuncular Index
HUMCSF1PO	12 8	12 8	12 10	1.52	1.26
HUMTPOX	11 8	11 8	11 8	1.25	1.13
HUMTH01	7	9p 7m	9	3.03	2.02
HUMvWA31	19 18	19m 16p	17 15	0.005	0.50

	M	С	AF	Paternity Index	Avuncular Index
D16S539	12	12m 11p	12 11	1.84	1.42
D7S820	10 9	11p 9m	11 10	2.48	1.74
D13S317	12 10	12m 8p	11 8	5.03	3.02
D5S818	13 11	11	11	2.44	1.72

	M	C	AF	Paternity Index	Avuncular Index
FGA	24 23	24m 21p	23 21	2.88	1.94
D18S51	17 14	17 14	14	3.04	2.02
D21S11	30 28	30m 29p	29 28	2.76	1.88
D3S1358	15 14	14	15 14	3.56	2.28
D8S1179	14 10	15p 14m	15 13	4.56	2.78

Paternity Trio with a Single Inconsistency

13 Core CODIS STR Loci

Combined Paternity Index 632

Combined Avuncular Index 862

	M	С	AF	Paternity Index	Avuncular Index
F13AO1	7 12	7 12	12	4.83	2.92
FESFPS	11 12	11	11 12	1.41	1.21
F13B	9	9	8 9	2.06	1.53
LIPOL	10 11	10m 13p	13	16.95	8.98
PENTA E	14 15	13p 14m	13 15	3.85	2.43

Paternity Trio with a Single Inconsistency

18 STR Loci

Combined Paternity Index 578,603

Combined Avuncular Index 101,683

We can use a likelihood ratio to test two competing hypotheses:

H₁: The tested man (alleged father) is the biological father of the child

H₂: The tested man's brother is the biological father of the child

We can use a likelihood ratio to test two competing hypotheses:

Combined Paternity Index

Combined Avuncular Index

The observed genetic results are 5.7-times more likely to occur under the scenario that the tested man is the father of the child, as opposed to the scenario that the tested man was the uncle of the child.

PowerPlexTM 16 System

Extremely Useful in Cases with a Single Non-Matching Locus

P-52147 Case of Single Exclusion

P-52147 Case of Single Exclusion

P-52147 Case of Single Exclusion

P-52147 Case of Single Exclusion PowerPlexTM 16 System

13 STR loci minus Penta D & Penta E

Residual Combined Paternity Index 1,914

Probability of Exclusion 99.99997%

Probability of Paternity(prior=0.5) 99.95%

15 STR loci with Penta D & Penta E

Residual Combined Paternity Index 37,699

Probability of Exclusion 99.999998%

Probability of Paternity(prior=0.5) 99.997%

Popstats Cannot Correctly Calculate Parentage Statistics in Non-Typical Cases

What if We Don't Have the Mother's Genetic Data?

Popstats Cannot Calculate the Paternity Statistics Without the Known Parent (Mother)

We can still develop a likelihood estimation for parentage.

Lets examine the following logic:

Popstats Can only Calculate with a Complete Trio (Mother, Child, Alleged Father)

- Observe two types from a man and a child
- Assume true duo— the man is the father of the child
- Assume false duo the man is not the father of the child (simply two individuals selected at random)
- In the false duo the child's father is a man of unknown type, selected at random from population (unrelated to tested man)

Paternity Index Only Man and Child Tested Hypothetical case

DNA Analysis Results in Two Genotypes

Mother Not Tested

Child (AB)

Alleged Father (AC)

PI determination in hypothetical DNA System

PI = X / Y

Numerator

- X = is the probability that (1) a man randomly selected from a population is type AC, and (2) his child is type AB.
- $X = Pr{AF passes A} \times Pr {M passes B} + Pr{AF passes B} \times Pr{M passes A}$

PI determination in hypothetical DNA System

$$PI = X / Y$$

Denominator

- Y = is the probability that (1) a man randomly selected and unrelated to tested man is type AC, and (2) a child unrelated to the randomly selected man is AB.
- Y = Pr{RM passes A} x Pr {M passes B} +
 Pr{RM passes B} x Pr{M passes A}

- When the mother's genetic data is present, Pr{M passes A} is 0, 0.5, or 1, and Pr{M passes B} is 0, 0.5, or 1
- Without the mother's data, Pr {M passes A} becomes the frequency of the gametic allele, p and Pr {M passes B} becomes the frequency of the gametic allele, q.

So, if we have a heterozygous child AB, and a heterozygous Alleged Father AC then

```
X = Pr{AF passes A} x Pr {M passes B} +
Pr{AF passes B} x Pr{M passes A}
```

$$X = Pr{AF passes A} \times q + Pr{AF passes B} \times p$$

$$Pr{AF passes A} = 0.5$$

$$Pr{AF passes B} = 0$$

$$X = 0.5q$$

 $X = 0.5 \times q + 0 \times p$

So, if we have a heterozygous child AB, and a heterozygous Alleged Father AC then

```
Y = Pr{RM passes A} x Pr {M passes B} +
Pr{RM passes B} x Pr{M passes A}
```

$$\mathbf{Y} = \mathbf{p} \mathbf{x} \mathbf{q} + \mathbf{q} \mathbf{x} \mathbf{p}$$

$$Y = 2pq$$

So, if we have a heterozygous child AB, and a heterozygous Alleged Father AC then

$$PI = X / Y$$
 $X = 0.5q$
 $Y = 2pq$
 $PI = 0.5q / 2pq$
 $PI = 0.25/p$
 $PI = 1/4p$

The untested Mother could have passed either the A or B allele
AF has a 1 in 2 chance of passing A allele
RM has (p + q) chance of passing the A or B allele

Numerator

Probability = $2p_Ap_C \times 2p_Ap_B \times 0.5_{(fA)} \times p_B$

Denominator

$$PI = \frac{2p_{A}p_{B} \times 2p_{A}p_{C} \times 0.5_{(mA)} \times p_{B}}{2p_{A}p_{B} \times 2p_{A}p_{C} \times (p_{(mA)} \times p_{(fB)} + p_{(mB)} \times p_{(fA)})}$$

$$PI = \frac{0.5p_{B}}{2p_{A}p_{B}}$$

$$PI = \frac{0.25}{p_{A}}$$

The untested Mother could have passed either
the A or B allele
AF can only pass A allele
RM has (p + q) chance of passing the A or B allele

Numerator

Probability =
$$p_A^2 \times 2p_A p_B \times 1_{(fA)} \times p_B$$

Denominator

$$p_{A} + p_{B}$$

$$2p_{A}p_{B}$$

$$A$$

$$p_{A} + p_{B}$$

$$2p_{A}p_{B}$$

$$probability =$$

$$p_{A}^{2} \times 2p_{A}p_{B} \times (p_{(mA)} \times p_{(fB)} + p_{(mB)} \times p_{(fA)})$$

$$PI = \frac{p_A^2 \times 2p_A p_C \times 1_{(mA)} \times p_B}{p_A^2 \times 2p_A p_C \times (p_{(mA)} \times p_{(fB)} + p_{(mB)} \times p_{(fA)})}$$

$$PI = \frac{p_B}{2p_A p_B}$$

$$PI = \frac{0.5}{p_A}$$

The untested Mother could have passed either the A or B allele
AF can pass either A or B allele
RM has (p + q) chance of passing the A or B allele

Numerator

Probability =

$$2p_Ap_B \times 2p_Ap_B \times (0.5_{(fA)} \times p_B + 0.5_{(fB)} \times p_A)$$

Denominator

probability =

$$2p_Ap_B \times 2p_Ap_B \times (p_{(mA)} \times p_{(fB)} + p_{(mB)} \times p_{(fA)})$$

$$PI = \frac{2p_{A}p_{B} \times 2p_{A}p_{B} \times (0.5_{(fA)} \times p_{B} + 0.5_{(fB)} \times p_{A})}{2p_{A}p_{B} \times 2p_{A}p_{B} \times (p_{(mA)} \times p_{(fB)} + p_{(mB)} \times p_{(fA)})}$$

PI =
$$\frac{0.5p_B + 0.5p_A}{2p_A p_B}$$
PI =
$$\frac{p_A + p_B}{4p_A p_B}$$

The untested Mother would have to pass an A allele
AF can pass only the A allele
RM has p chance of passing the A allele

Numerator

Probability = $p_A^2 \times p_A^2 \times 1_{(fA)} \times p_A$

Denominator

probability =
$$p_A^2 \times p_A^2 \times p_{(mA)} \times p_{(fA)}$$

PI =
$$\frac{p_A^2 \times p_A^2 \times 1_{(fA)} \times p_A}{p_A^2 \times p_A^2 \times p_{(mA)} \times p_{(fA)}}$$

$$PI = \frac{p_A}{p_A \times p_A}$$

$$PI = \frac{1}{p_A}$$

The untested Mother would have to pass an A allele
AF would have to pass the A allele
RM has p chance of passing the A allele

Numerator

Probability = $2p_Ap_B \times p_A^2 \times 0.5_{(fA)} \times p_A$

Denominator

probability = $2p_Ap_B \times p_A^2 \times p_{(mA)} \times p_{(fA)}$

PI =
$$\frac{2p_{A}p_{B} \times p_{A}^{2} \times 0.5_{(fA)} \times p_{A}}{2p_{A}p_{B} \times p_{A}^{2} \times p_{(mA)} \times p_{(fA)}}$$

$$\begin{array}{c} 0.5p_{A} \\ p_{A} \times p_{A} \end{array}$$

$$\begin{array}{c} 0.5p_{A} \\ p_{A} \times p_{A} \end{array}$$

Single locus, no null alleles, low mutation rate, codominance

<u>C</u>	<u>AF</u>	Numerator	Denominate	or <u>PI</u>	$\underline{\mathbf{PE}}$
AB	AC	0.5b	2ab	0.25/a	$[1-(a+b)]^2$
AB	AB	0.5(a+b)	2ab	(a+b)/4ab	$[1-(a+b)]^2$
AB	A	b	2ab	0.5/a	$[1-(a+b)]^2$
A	AC	0.5 a	a^2	0.5/a	$(1-a)^2$
A	A	a	a^2	1/a	$(1-a)^2$

	С	AF	Allele Frequencies
HUMCSF1PO	10	11	10 = 0.25269
(5q33.3 - q34)	11	12	11 = 0.30049
HUMTPOX	8	8	8 = 0.54433
(2p23 - 2pter)	11	11	11 = 0.25369
HUMTH01	6	6	6 = 0.22660
(11p15.5)	9.3	7	9.3 = 0.30542
HUMvWA31	15	16	15 = 0.11224
(12p13.3 - p13.2)	16		16 = 0.20153

	С	AF	PI Formula
HUMCSF1PO	10	11	0.25/a
(5q33.3 - q34)	11	12	
HUMTPOX	8	8	(a+b)/4ab
(2p23 - 2pter)	11	11	
HUMTH01	6	6	0.25/a
(11p15.5)	9.3	7	
HUMvWA31 (12p13.3 - p13.2)	15 16	16	0.5/a

	С	AF	PI
HUMCSF1PO	10	11	0.83
(5q33.3 - q34)	11	12	
HUMTPOX	8	8	1.44
(2p23 - 2pter)	11	11	
HUMTH01	6	6	1.10
(11p15.5)	9.3	7	
HUMvWA31 (12p13.3 - p13.2)	15 16	16	2.48

	С	AF	PE Formulas
HUMCSF1PO	10	11	[1-(a+b)] ²
(5q33.3 - q34)	11	12	
HUMTPOX	8	8	[1-(a+b)] ²
(2p23 - 2pter)	11	11	
HUMTH01	6	6	[1-(a+b)] ²
(11p15.5)	9.3	7	
HUMvWA31 (12p13.3 - p13.2)	15 16	16	[1-(a+b)] ²

	С	AF	PE
HUMCSF1PO	10	11	0.1988
(5q33.3 - q34)	11	12	
HUMTPOX	8	8	0.0408
(2p23 - 2pter)	11	11	
HUMTH01	6	6	0.2190
(11p15.5)	9.3	7	
HUMvWA31 (12p13.3 - p13.2)	15 16	16	0.4709

	С	AF	Allele Frequencies
D16S539	12	11	12 = 0.33911
(16p24 - p25)	13	12	13 = 0.16337
D7S820	11	11	11 = 0.20197
(7q)	12	14	12 = 0.14030
D13S317 (13q22 - q31)	11	11	11 = 0.31888
D5S818	11	11	11 = 0.41026
(5q21 - q31)	13	12	13 = 0.14615

	С	AF	PI Formulas
D16S539	12	11	0.25/a
(16p24 - p25)	13	12	
D7S820	11	11	0.25/a
(7q)	12	14	
D13S317 (13q22 - q31)	11	11	1/a
D5S818	11	11	0.25/a
(5q21 - q31)	13	12	

	С	AF	PI
D16S539	12	11	0.74
(16p24 - p25)	13	12	
D7S820	11	11	1.24
(7q)	12	14	
D13S317 (13q22 - q31)	11	11	3.14
D5S818	11	11	0.61
(5q21 - q31)	13	12	

	С	AF	PE Formulas
D16S539	12	11	[1-(a+b)] ²
(16p24 - p25)	13	12	
D7S820	11	11	[1-(a+b)] ²
(7q)	12	14	
D13S317 (13q22 - q31)	11	11	(1-a) ²
D5S818	11	11	[1-(a+b)] ²
(5q21 - q31)	13	12	

	С	AF	PE
D16S539	12	11	0.2475
(16p24 - p25)	13	12	
D7S820	11	11	0.4325
(7q)	12	14	
D13S317 (13q22 - q31)	11	11	0.4639
D5S818	11	11	0.1968
(5q21 - q31)	13	12	

	С	AF	Allele Frequencies
FGA	19	19	19 = 0.05612
(4q28)	21	25	21 = 0.17347
D18S51 (18q21.3)	16	16 20	16 = 0.10714
D21S11 (21q11.2 - q21)	29	28 29	29 = 0.18112
D3S1358	15	15	15 = 0.24631
(3p)	18	17	18 = 0.16256
D8S1179	11	11	11 = 0.05867
(8)	13	13	13 = 0.33929

	С	AF	PI Formulas
FGA	19	19	0.25/a
(4q28)	21	25	
D18S51 (18q21.3)	16	16 20	0.5/a
D21S11 (21q11.2 - q21)	29	28 29	0.5/a
D3S1358	15	15	0.25/a
(3p)	18	17	
D8S1179	11	11	(a+b)/4ab
(8)	13	13	

	С	AF	PI
FGA	19	19	4.45
(4q28)	21	25	
D18S51 (18q21.3)	16	16 20	4.67
D21S11 (21q11.2 - q21)	29	28 29	2.76
D3S1358	15	15	1.02
(3p)	18	17	
D8S1179	11	11	5.00
(8)	13	13	

	С	AF	PE Formulas
FGA	19	19	[1-(a+b)] ²
(4q28)	21	25	
D18S51 (18q21.3)	16	16 20	(1-a) ²
D21S11 (21q11.2 - q21)	29	28 29	(1-a) ²
D3S1358	15	15	[1-(a+b)] ²
(3p)	18	17	
D8S1179	11	11	[1-(a+b)] ²
(8)	13	13	

	С	AF	PE
FGA	19	19	0.5935
(4q28)	21	25	
D18S51 (18q21.3)	16	16 20	0.7972
D21S11 (21q11.2 - q21)	29	28 29	0.6706
D3S1358	15	15	0.3944
(3p)	18	17	
D8S1179	11	11	0.3625
(8)	13	13	

Motherless Paternity 13 Core CODIS Loci

Combined Paternity Index 1,676

Probability of Paternity 99.94%

Probability of Exclusion 99.94%

PowerPlexTM 16 System

Extremely Useful in Cases
Where the Mother is Not Tested
(Motherless Cases)

PowerPlexTM 16

Motherless Case P-54137 D3S1358 D21S11 **TH01** D18S51 Penta E 54137 C-...le8/16/01 3 Blue 54137 C-PP16 9.3 54137 AF...le8/16/01 4 Blue | 54137 AF-PP16 [17] [19] D3S1358 THO₁ D21S11 D18S51 Penta E P16Sample8/21/01 2 Blue LADDER 13.3 13.2 947A(10...le8/21/01 9 Blue 9947A(10/16N)-PP16

9.3

PowerPlexTM 16 Motherless Case P-54137

PowerPlexTM 16 Motherless Case P-54137

Motherless Case P-54137 PowerPlexTM 16 System

13 STR loci minus Penta D & Penta E

Combined Paternity Index 1,050

Probability of Exclusion 99.98%

Probability of Paternity(prior=0.5) 99.90%

15 STR loci with Penta D & Penta E

Combined Paternity Index 12,340

Probability of Exclusion 99.997%

Probability of Paternity(prior=0.5) 99.992%

Popstats Cannot Correctly Calculate Parentage Statistics in Non-Typical Cases

Popstats Cannot Currently Calculate Parentage Statistics For The Identification Of Human Remains

Reverse Parentage Testing

Reverse Parentage Testing

Applications

- Unidentified remains
- Victims of Mass Disasters
- > Crime Scene Evidence
- Kidnapped or Abandoned Babies

REVERSE PARENTAGE INDEX BODY IDENTIFICATION

ALLEGED MOTHER

EVIDENCE

ALLEGED FATHER

— A

— B

— B

___(

— D

Reverse Parentage Testing

Three genotypes:

- Alleged Mother
- Child (missing)
- Alleged Father

Missing child scenario

Reverse Parentage Index RPI = X / Y

Numerator

X = is the probability that (1) a woman randomly selected from a population is type AB, and (2) a man randomly selected from a population is type CD, and (3) their child is type BC.

Reverse Parentage Index

 $\mathbf{RPI} = \mathbf{X} / \mathbf{Y}$

Denominator

Y = is the probability that (1) a woman randomly selected from a population and unrelated to missing child is type AB, (2) a man randomly selected from a population and unrelated to missing child is type CD, and (3) a child, randomly selected from a population is BC.

Missing child scenario

Numerator

Probability = $2p_Ap_B \times 2p_Cp_D \times 0.5 \times 0.5$

Reverse Parentage Analysis Missing child scenario Denominator

2p_Ap_B AB

 $2p_{C}p_{D}$

Probability = $2p_Ap_B \times 2p_Cp_D \times 2p_Bp_C$

Missing child scenario

Missing child scenario

Numerator

Probability = $2p_A p_B \times p_C^2 \times 0.5 \times 1$

Denominator

$$(BC)$$
 $2p_Bp_C$

Probability = $2p_A p_B \times p_C^2 \times 2p_B p_C$

LR =
$$p_{A}p_{B} \times p_{C}^{2} \times 0.5 \times 1$$

$$p_{A}p_{B} \times p_{C}^{2} \times 2p_{B}p_{C}$$

$$0.5$$

$$LR = 2p_{B}p_{C}$$

Missing child scenario

Denominator

$$p_B^2$$
 B

$$C p_C^2$$

Probability = $p_B^2 \times p_C^2 \times 2p_B p_C$

LR =
$$p_{B}^{2} \times p_{C}^{2} \times 1 \times 1$$

$$p_{B}^{2} \times p_{C}^{2} \times 2p_{B}p_{C}$$

$$1$$

$$LR = 2p_{B}p_{C}$$

Having both parents to test in a reverse parentage test is indeed a luxury

Often, we are limited to one parent or possibly even siblings to attempt an identification

Single parent cases revert statistically to the "non-maternal" format we discussed earlier

Thank you!

