Popstats Relatedness Statistics

Arthur J. Eisenberg, Ph.D. Director
DNA Identity Laboratory UNT-Health Science Center
eisenber@hsc.unt.edu

Relatedness

"Relatedness is a consequence of sharing identical alleles. Alleles that have descended from a single ancestral allele are said to be Identical by Descent (IBD)." ${ }^{*}$ Alleles that are IBD will have the same base sequence.

However, alleles with the same base sequence are not necessarily IBD, they can be Identical By State and not originate from the same ancestral allele. This may be true in an individual that is homozygous at a given locus.

* B.S. Weir, 1996. Genetic Data Analysis II. (p 204).

The genetic profile of a suspect matches the genetic profile of an evidentiary sample, therefore, the suspect cannot be excluded as a potential contributor of the biological evidentiary sample.

Popstats can then be used to calculate the frequency with which a person taken at random from a population of potential perpetrators has the profile in question?

Hilin Popstats 5.3
File Edit Profile Case Type Configuration Window Help

Single Sample Target Pro... $\square \square$

Evidence				
	Locus	Allele 1	Allele 2	\pm
(\times	D361358	17	17	
\mathbf{x}	, W/	14	16	
\mathbf{x}	FGA	20	23	
\mathbf{x}	D891179	13	15	
\mathbf{x}	D21511	29	31.2	
\mathbf{x}	D18551	12	18	
\mathbf{x}	D55818	11	12	
\mathbf{x}	D136317	8	12	
\mathbf{x}	D75820	8	11	
\mathbf{x}	CSF1FO	12	13	
\mathbf{x}	TPOX	8	9	
\mathbf{x}	TH01	7	9.3	
\times	D165539	12	13	-
4			-	

\square Single Sample Target Pro... $\square \square$

Reference:
Suspect

Locus		Allele 1	Allele 2	\pm
(\times	D351358	17	17	
K	Vw	14	1 E	
X	FGA.	20	23	
X	D891179	13	15	
X	[21511	29	31.2	
x	[18551	12	18	
(\times	[56818	11	12	
K	0135317	8	12	
X	075820	8	11	
(\times	[SF1PD	12	13	
x	TPOX	8	9	
X	TH01	7	9.3	
W	[165539	12	13	\checkmark
4			-	

Abstract

 ummary of Probability Statistics

 我 \Rightarrow

 $\frac{102}{502}$

ene
,

Pill Popstats 5.3
File Edit Profile Case Type Configuration Window Help

1/4 Inverse Summary of Probability Statistics

| Locus | CAU | BLK | SEH | SW/H |
| :--- | ---: | ---: | ---: | ---: | ---: |
| D3S1358 | 21 | 24 | 36 | 58 |
| WWA | 24 | 28 | 27 | 23 |
| FGA | 22 | 55 | 28 | 50 |
| D8S1179 | 13 | 11 | 12 | 13 |
| D21S11 | 28 | 35 | 25 | 28 |
| D18551 | 43 | 66 | 67 | 91 |
| D5S818 | 3 | 5 | 4 | 4 |
| D135317 | 16 | 29 | 19 | 35 |
| D7S820 | 15 | 13 | 16 | 18 |
| CSF1PO | 22 | 30 | 20 | 20 |
| TPOX | 7 | 7 | 12 | 27 |
| TH01 | 9 | 11 | 8 | 6 |
| D165539 | 9 | 16 | 12 | 17 |

	CAU	BLK	SEH	SW/H
Total	$2,124,000,000,000,000$	$70,420,000,000,000,000$	$15,680,000,000,000,000$	$309,500,000,000,000,000$

Relatedness Statistics

Although, unrelated individuals have a very low probability of sharing the same genetic profile with a suspect, the probability increases for relatives.

Relatedness Statistics

What is the probability of a person with a given degree of relatedness having the identical genotype as the known genotype of our suspect?

Relatedness Statistics

Calculations for related individuals are conditional probabilities. They answer the question for a specific genotype

In general, the closest relationship that has an impact on calculations is full-sibs

\leqslant
-

|

Click on Popstats Help Button (? icon) in order to equations used for relatedness calculations

Popstats Help
File Edit Biookmark Options Help

Eontents	Search	Back	Print	$\leq<$	\geq	Geosary	Exit

Popstats Main Menu

The following Fopstats Help Topics are available:

Frequently Asked Questions

For Help on Help. Fress F1

Click on Popstats Calculations

Popstats Help

File Edit	Einakmiart Qpitions Help							
Eiornternts	Serarction	E日・モロ	Erirat	$\leq<$	$\geq>$	奋lonss．ar．r	E－rit	
1－1－2								

Ciefieult bin methard
FGF：LaEi

Gロッfictemに家 Lirnits

Interirn ceiliric Frimbiale

Fis．rerticie cies

응ㅋㅋㄹ
으오은
－킄큰
果果家

File Edit Bookmark Options Help

Contents	Search	Back	Erint	$\leq<$	$\geq>$	Glossary

Relatedness Statistics

The Relatedness Statistics calculation is performed only for DNA profiles that have no more than two bands/alleles at every locus. This calculation is supported in both the Forensic-Single Sample and Forensic-Multiple Samples Cases. Given an individual's DNA profile, the conditional probability (${ }^{f_{r}}$) that the individual's non-inbred relative has the same locus genotype can be calculated by the following formulae:

- For parents, offsprings, half-siblings, uncles, nephews, and first cousins

$$
\begin{array}{ll}
\text { Homozygote: } & f_{y}=p^{2}+4 p(1-p) C_{r} \\
\text { Heterozygote: } & f_{y}=2 p q+2(p+q-4 p q) C_{r}
\end{array}
$$

```
                        C
                            =1/4 for parents and offypring;
                                    Cr
                                    =1/8 for half-siblings, uncles and nephews; and
                            C
```

are:
where the values of ${ }^{C_{r}}$ are user-configurable. The suggested values for ${ }^{C}$, are: However, you can change these default values to any other number.

- For full siblings, the relatedness formulae are:

$$
\begin{array}{ll}
\text { Hom caygote: } & f_{r}=\left(1+2 p+p^{2}\right) / 4 \\
\text { Hetercaygote: } & f_{y}=(1+p+q+2 p q) / 4
\end{array}
$$

The combined relatedness statistics $\left({ }^{F}\right.$) of the DNA profile is calculated by the Product Rule, as follows:

$$
F_{r}=\prod_{\mathrm{bci}} f_{r} .
$$

OK Cancel Help

C_{r} is the Coefficient of Kinship which is the

 probability that the two alleles between relatives areIdentical By Descent

Coefficientof Knship(F)definition: definition:

- randomly select an allele from each of two individuals
- the probability that the two alleles are identical by descent (IBD) is called F, the coefficient of kinship
- the expected proportion of alleles that are IBD between two people is 2 F

Hilin Popstats 5.3
File Edit Profile Case Type Configuration Window Help

 ＊

E：／Single Sample Target Pro．．．$\square \square$

	Fiefereroie：					
Lᄃ®，	SusFrers					
		Lロローム＊	Allaye 7	A．llelie		\pm
LDIS	［34		77	17		
\leqslant	13.	，（\％	74	1 E		
	$\sqrt{34}$	FGA	$2 \square$	23		
\％	［34		13	15		
	15	D21： 51	$2 \cdot 9$	31.2		
	5	D19 51	12	19		
	［3c		71	12		
	134	［73 317	S	12		
	［3c	¢7：	8	17		
	5	■GF7Fロ	12	1－3		
	［36］	TFロロ	\％	－		
	$\sqrt{36}$	THIT	7	9		
	15	C7ESES9	12	13		－
	4				－	

Abstract

 ummary of Probability Statistics

 我 \Rightarrow

 $\frac{102}{502}$

ene
,

File Edit Profile Case Type Configuration Window Help
高家

CAU	BLK	K	SEH	Sw'H	
Locus	Unrelated	Parent/ Dffspring	Full Sibling	Hall Sitling/ Uncle/Bunt// Nephew/Niece	First Cousin
D361358	4.6529E-02	$2.1180 \mathrm{E}-101$	3.6711E-01	1.2833E-01	8.6594E-12
WW/	$4.110 \mathrm{EE}-12$	1.5175E-11	$3.3615 \mathrm{E}-101$	9.6428E-02	6.6767E-12
FGA	4.60105E-02	1.5180E-01	3.3740E-01	9.8902E-02	$7.2453 \mathrm{E}-12$
D86179	$7.4442 \mathrm{E}-12$	$2.2450 \mathrm{E}-101$	38086E-01	1.4947E-01	1.1198E-01
D21511	36039E-02	1.4030E-01	$3.2916 \mathrm{E}-101$	8.8169E-02	6.2104E-12
018551	$2.3427 \mathrm{E}-102$	1.0970E-01	3.1071E-01	6.6564E-02	$4.4996 \mathrm{E}-102$
D56818	2.9041E-01	3.8210E-01	$5.1365 \mathrm{E}-101$	3.3626E-01	3.1333E-01
D135317	6.1431E-02	$2.0410 \mathrm{E}-101$	3.6741E-01	1.3277E-01	$9.7098 \mathrm{E}-02$
075820	6.5690E-02	1.8230E-01	$3.5757 \mathrm{E}-01$	1.2400-01	9.4843E-02
CSF1PO	4.6424E-122	1.9825E-101	36073E-01	1.2234E-01	8.4381E-12
TPOX	1.3412E-01	3.3375E-01	4.5040E-01	2.3393E-01	1.8402E-01
TH01	1.0530E-01	2.3890E-01	3.9578E-01	1.7210E-01	1.3870E-01
D165539	1.1082E-01	2.5125E-01	4.0333E-01	1.8103E-01	1.4593E-01
Total	4.709E-16	$9.519 \mathrm{E}-10$	2.838E-IIE	$5.299 \mathrm{E}-12$	1.224E-13

CAU	BLK	SEH		Sw'H	
Locus	Unrelated	Parent/ Dffspring	Full Sibling	Half Sibling/ Uncle/Hunt/ Nephew/Niece	First Cousin
D361358	21	5	3	8	12
WW/	24	7	3	10	15
FGA	22	7	3	10	14
D861179	13	4	3	7	9
D21511	28	7	3	11	16
D18551	43	9	3	15	22
D55818	3	3	2	3	3
0135317	16	5	3	8	10
D75820	15	5	3	8	11
CSF1P0	22	5	3	8	12
TPOX	7	3	2	4	5
TH01	9	4	3	E	7
0165539	9	4	2	6	7
Total	$2.124,000000000000000$	1,051,000000	352.400	188,700,000,000	70.0000000000100

[4.	BL	LK	SEH	Sw'H	
Locus	Uniclated	Parent/ Difspring	Full Sibling	Half Sibling/ Uncle/Aunt/ Nephew/Niece	First Cousin
0351358	4.1600-02	$2.0000 \mathrm{E}-101$	3.6010E-01	1.2000E-01	8.000]-02
Wwa	35938-02	1.6805E-01	$3.4301 \mathrm{E}-11$	1.0199E-01	6.896EE-02
FGA	1.8050E-02	9.8600E-02	3.0381E-01	$5.8325 E-102$	$3.8188 \mathrm{E}-02$
D851179	9.5057E-02	$2.1805 \mathrm{E}-101$	3.8279E-01	1.5655E-01	1.2581E-01
D21511	2.8637E-02	1.3265E-01	32348E-01	8.064.3E-02	$5.4640 \mathrm{E}-02$
018551	1.5228E-02	$9.4450 \mathrm{E}-12$	3.0103E-01	$5.4839 \mathrm{E}-102$	$35033 \mathrm{E}-02$
056818	1.8569E-01	3.0835-01	4.506]E-01	$2.4702 \mathrm{E}-101$	$2.1636 \mathrm{E}-\mathrm{O1}$
0135317	3.5080E-02	$2.59750-01$	38865E-01	1.4742E-01	9.1248E-02
075820	7.7793E-02	1.9880E-01	3.6885E-01	1.3830E-01	1.0804E-01
CSF1PO	$3.2880 \mathrm{E}-02$	1.7740E-01	3.4692E-101	1.0514E-01	6.9010E-02
TPOX	1.3395E-01	$2.7510 \mathrm{E}-101$	4.2104E-01	$2.0453 \mathrm{E}-101$	1.6924E-01
TH01	9.2329E-02	$2.7265 \mathrm{E}-101$	4.0941E-01	1.8249E-01	$1.3741 \mathrm{E}-17$
0166539	6.1615E-02	1.7585E-01	$3.5333 \mathrm{E}-101$	1.1873E-01	$9.0174 \mathrm{E}-12$
Total	1.420E-17	$3.373 \mathrm{E}-10$	1.90]E-06	1.160E-12	1.5EEE-14

Popstats 5. 3 - [Relatedness Statistics]

File Edit Profile Gase Type Configuration Window Help

[4]	BLK	SEH		Sw'H	
Locus	Unrelated	Parent/ Offspring	Full Sibling	Half Sibling/ Uncle/Bunt/ Nephew/Niece	First Cousin
D351358	24	5	3	8	13
WW/	28	E	3	10	15
FGA	55	10	3	17	26
D861179	11	5	3	E	8
D21511	35	8	3	12	18
D18551	66	11	3	18	29
056818	5	3	2	4	5
D136317	29	4	3	7	11
075820	13	5	3	7	9
CSF1P0	30	E	3	10	14
TPOX	7	4	2	5	E
TH01	11	4	2	5	7
D169539	16	6	3	8	11
Total	$70.420,00000000000000$	965,0010,000	523810	862.1000000000	860000000000000

File Edit Profile Gase Type Configuration Window Help
(2)

[4.		LK	SEH:	SW'H	
Locus	Unirelated	Parent/ Dffspring	Full Sibling	Half Sibling/ Uncle/Aunt/ Nephew/Niece	First Cousin
0361358	$2.7701 \mathrm{E}-12$	1.6230E-01	3.3774E-01	9.4321E-02	6.0331E-02
WWA	36987E-02	1.6880E-01	$3.4365 \mathrm{E}-10$	1.0289E-01	6.9940E-02
FGA	$3.5152 \mathrm{E}-02$	1.3350E-01	3.2554E-01	8.4326E-02	$5.9739 \mathrm{E}-02$
0861179	8.5725E-02	$2.3820 \mathrm{E}-101$	$3.9053 \mathrm{E}-10$	1.6196E-01	1.2384E-01
021511	4.0358E-02	1.6230E-01	3.4124E-01	1.0133E-01	$7.0844 \mathrm{E}-12$
018551	1.4971E-02	$9.5550 \mathrm{E}-12$	$3.0152 \mathrm{E}-101$	$5.5260 \mathrm{E}-102$	$3.5116 \mathrm{E}-12$
056818	2.4943E-01	3.5525E-01	4.6998E-01	3.0234E-01	$2.7589 \mathrm{E}-17$
0136317	$5.2533 \mathrm{E}-12$	1.7190E-01	$3.49018 \mathrm{E}-101$	1.1222E-01	8.2374E-02
075820	6.4360E-02	1.8440E-01	3.5829E-01	1.2438E-01	$9.4370 \mathrm{E}-12$
CSF1PO	4.9027E-02	$2.1255 \mathrm{E}-101$	3.6853E-01	1.3079E-01	8.9908E-02
TPOX	8.4350E-02	$2.9480 \mathrm{E}-101$	$4.1849 \mathrm{E}-10$	1.8957E-01	1.3696E-01
TH01	1.1869E-01	$2.4375 \mathrm{E}-101$	$4.0155 \mathrm{E}-101$	1.8122E-01	1.4995E-01
0165539	8.2615E-02	2.0835E-01	3.7483E-01	1.4548E-01	1.1405E-01
Total	6.379E-17	$4.841 \mathrm{E}-10$	2.160E-IE	$2.047 \mathrm{E}-12$	3.507E-14

File Edit Profile Case Type Configuration Window Help

Hilili Popstats 5.3 - [Relatedness Statistics]
File Edit Profile Case Type Configuration Window Help

CAU	BLK	LK	SEH	SWH	
Locus	Unrelated	Parent/ Offspring	Full Sibling	Half Sibling/ Uncle/Aunt/ Nephew/Niece	First Cousin
D351358	1.7185E-02	1.2680E-01	3.1742E-01	7.1439E-02	4.3759E-02
W/A	4.4303E-02	$2.1060 \mathrm{E}-01$	3.6638E-01	1.2745E-01	8.5877E-02
FGA	2.0049E-02	1.0590E-01	3.0796E-01	6.2975E-02	4.1512E-02
D851179	7.5293E-02	2.2045E-01	3.7905E-01	$1.4787 \mathrm{E}-01$	1.1158E-01
D21511	3.5239E-02	1.4530E-01	$3.3146 \mathrm{E}-01$	9.0269E-02	6.2754E-02
D18551	1.0950E-02	7.8800E-02	2.9214E-01	4.4875E-02	2.7913E-02
D55818	$2.4480 \mathrm{E}-01$	3.5590E-01	4.8915E-01	3.0035E-01	2.7258E-01
D135317	2.8834E-02	1.4165E-01	3.2803E-01	8.5242E-02	5.7038E-02
D75820	5.6800E-02	1.9380E-01	3.6110E-01	1.2530E-01	9.1050E-02
CSF1P0	5.0685E-02	2.2845E-01	3.7690E-01	1.3957E-01	9.5126E-02
TPOX	3.7185E-02	2.9425E-01	4.0642E-01	1.6572E-01	1.0145E-01
TH01	1.6298E-01	2.8945E-01	$4.3547 \mathrm{E}-01$	2.2622E-01	1.9460E-01
D16S539	5.9165E-02	1.9475E-01	3.6217E-01	1.2696E-01	9.3062E-02
Total	$3.231 \mathrm{E}-18$	$2.643 \mathrm{E}-10$	1.840E-06	7.319E-13	7.543E-15

[4]	BLK	SEH		SW/H	
Locus	Unrelated	Parent/ Difspring	Full Sibling	Half Sibling/ Uncle/Aunt/ Nephew/Niece	First Cousin
D361358	58	8	3	14	23
WWA	23	5	3	8	12
FGA	50	9	3	16	24
D861179	13	5	3	7	9
021511	28	7	3	11	16
D18551	91	13	3	22	36
D56818	4	3	2	3	4
0135317	35	7	3	12	18
075820	18	5	3	8	11
CSF1PO	20	4	3	7	11
TPOX	27	3	2	6	10
TH01	6	3	2	4	5
D169539	17	5	3	8	11
Total		3.784 .000000	543500	366,0000000000	600,000,000,000

September 22, 2003
Popstats 5.3 DNA Relatedness Profile

Fixed Bin. Related Individuals
Database: C:\CODISII\CODIS\POPDATA\FBI\STR
User Name: eisenber
Boundaries: $0 \quad 200010000$
Windows: $>0.025<0.025<0.080$
Specimen:
Suspect

Population Group: CAU

Relationship: Unrelated

Locus	Band/ Allele 1	Band/ Allele 2	Frecuency	1/Frecuency
D3S1358	17		$4.6529 \mathrm{E}-02$	21
VWA	14	16	$4.1106 \mathrm{E}-02$	24
FGA	20	23	$4.6005 \mathrm{E}-02$	22
D8S1179	13	15	$7.4442 \mathrm{E}-02$	13
D21S11	29	31.2	$3.6039 \mathrm{E}-02$	28
D18S51	12	18	$2.3427 \mathrm{E}-02$	43
D5S818	11	12	$2.9041 \mathrm{E}-01$	3
D13S317	8	12	$6.1431 \mathrm{E}-02$	16
D7S820	8	11	$6.5690 \mathrm{E}-02$	15
CSF1P0	12	9	$4.6424 \mathrm{E}-02$	22
TP0X	8	9.3	$1.3412 \mathrm{E}-01$	7
TH01	7	13	$1.0530 \mathrm{E}-01$	9
D16S539	12			
				$9082 \mathrm{E}-01$

Composite frequency $=4.709 \mathrm{E}-16$
1 out of $2,124,000,000,000,000$

Popstats 5.3 Report

Relationship: Parent/0ffspring

Locus	Band/ Allele 1	Band/ Allele 2	Frecuency	1/Frequency
D351358	17		2.1180E-01	5
TWA	14	16	1.5175E-01	7
FCA	20	23	1.5180E-01	7
D881179	13	15	$2.2450 \mathrm{E}-01$	4
D21511	29	31.2	1.4030E-01	7
D18851	12	18	1.09700-01	9
D5S818	11	12	3.82100-01	3
D135317	8	12	2.04100-01	5
D79820	8	11	1.8230E-01	5
CSFIPO	12	13	1.9825E-01	5
trox	8	9	3.3375E-01	3
THO1	7	9.3	2.38900-01	4
D168539	12	13	2.51250-01	4
```Composite frequency = 9.519R-10 1 out of 1,051,000,000```				

September 22, 2003
Popstats 5.3 DNA Relatedness Profile

Fixed Bin. Related Individuals
Database: C:\CODISII\CODIS\POPDATA\FBI\STR
User Name: eisenber
Boundaries: 000010000
Windows: $>0.025<0.025<0.080$

Specimen:
Suspect
Population Group: CAU Continued
Relationship: Full Sibling

Locus	Band/   Allele 1	Band/   Allele 2	Frequency	1/Frequency
D3S1358	17		$3.6711 \mathrm{E}-01$	3
VWA	14	16	$3.3615 \mathrm{E}-01$	3
FGA	20	23	$3.3740 \mathrm{E}-01$	3
D8S1179	13	15	3.8086E-01	3
D21S11	29	31.2	$3.2916 \mathrm{E}-01$	3
D18551	12	18	3.1071E-01	3
D5S818	11	12	$5.1365 \mathrm{E}-01$	2
D13S317	8	12	$3.6741 \mathrm{E}-01$	3
D7S820	8	11	$3.5757 \mathrm{E}-01$	3
CSFlP0	12	13	3.6073E-01	3
TPOX	8	9	4.5040E-01	2
THO1	7	9.3	$3.9578 \mathrm{E}-01$	3
D16S539	12	13	4.0333E-01	2
Composite Erequency $=2.838 \mathrm{E}-06$				

## Relationship: Half-Sibling/Uncle/hunt/Nephew/Wiece

Locus	Band/   Mlele 1	Band/ M11ele 2	Frecuency	1/Frequancy
D351358	17		1.2833E-01	8
Tid	14	16	9.64285-102	10
FCA	20	23	9.9902E-02	10
D881179	13	15	1.4947E-01	7
[21511	29	31.2	8.8169E-02	11
D18551	12	18	6.65645-02	15
D5S818	11	12	3.3626E-01	3
0135317	8	12	1.3277E-01	8
D78820	8	11	1.2400E-01	8
CSFIPO	12	13	1.2234E-01	8
TPOX	8	9	2.3393E-01	4
THO1	7	9.3	1.7210E-01	6
D165539	12	13	1.8103E-01	6
Composite Erequency $=5.299 \mathrm{E}-12$				
1 out of $188,700,000,000$				

September 22, 2003
Popstats 5.3 DNA Relatedness Profile

Fixed Bin. Related Individuals
Database: C:\CODISII\CODIS $\mathrm{POPDATA} \backslash F B I \backslash S T R$
User Name: eisenber
Boundaries: $0 \quad 200010000$
Windows: $>0.025<0.025<0.080$
Specimen:
Suspect
Population Group: CAU Continued
Relationship: First Cousin

Locus	Band/   Allele 1	Band/   Allele 2	Frequency	1/Frequency
D3S1358	17		$8.6594 \mathrm{E}-02$	12
VWA	14	16	$6.8767 \mathrm{E}-02$	15
FGA	20	23	$7.2453 \mathrm{E}-02$	14
D8S1179	13	15	$1.1196 \mathrm{E}-01$	9
D21S11	29	31.2	$6.2104 \mathrm{E}-02$	16
D18S51	12	18	$4.4996 \mathrm{E}-02$	22
D5S818	11	12	$3.1333 \mathrm{E}-01$	3
D13S317	8	12	$9.7098 \mathrm{E}-02$	10
D7S820	8	11	$9.4843 \mathrm{E}-02$	11
CSF1P0	12	13	$8.4381 \mathrm{E}-02$	12
TP0X	8	9	$1.8402 \mathrm{E}-01$	5
TH01	7	13	$1.3870 \mathrm{E}-01$	7
D16S539	12		$1.4593 \mathrm{E}-01$	7

Composite frequency $=1.224 \mathrm{E}-13$
1 out of $8,170,000,000,000$

## Relatedness Statistics Brothers

Prob (Full-Sibs have same given genotype)
$A_{i} A_{i}$ (homozygous locus): $\left(1+p_{i}\right)^{2} / 4$
$A_{i} A_{j}$ (heterozygous locus): $\left(1+p_{i}+p_{j}+2 p_{i} p_{j}\right) / 4$

			ALLELE	ALLELE	FORMULA	FULL
	ALLELE	ALLELE	FREQ	FREQ	FULL SIBLING	SIBLING
LOCUS	i	j	$\mathrm{p}_{\mathrm{i}}$	$\mathrm{p}_{\mathrm{j}}$		
D3S1358	17		0.2118		$\left(1+p_{i}\right)^{2} / 4$	0.36711
VWA	14	16	0.1020	0.2015	$\left(1+p_{i}+p_{j}+2 p_{i} p_{j}\right) / 4$	0.33615
FGA	20	23	0.1454	0.1582	$\left(1+p_{i}+p_{j}+2 p_{i} p_{j}\right) / 4$	0.33740
D8S1179	13	15	0.3393	0.1097	$\left(1+p_{i}+p_{j}+2 p_{i} p_{j}\right) / 4$	0.38086
D21S11	29	31.2	0.1811	0.0995	$\left(1+p_{i}+p_{j}+2 p_{i} p_{j}\right) / 4$	0.32916
D18S51	12	18	0.1276	0.0918	$\left(1+p_{i}+p_{j}+2 p_{i} p_{j}\right) / 4$	0.31071
D5S818	11	12	0.4103	0.3538	$\left(1+p_{i}+p_{j}+2 p_{i} p_{j}\right) / 4$	0.51361
D13S317	8	12	0.0995	0.3087	$\left(1+p_{i}+p_{j}+2 p_{i} p_{j}\right) / 4$	0.36741
D7S820	8	11	0.1626	0.2020	$\left(1+p_{i}+p_{j}+2 p_{i} p_{j}\right) / 4$	0.35757
CSF1PO	12	13	0.3251	0.0714	$\left(1+p_{i}+p_{j}+2 p_{i} p_{j}\right) / 4$	0.36073
TPOX	8	9	0.5443	0.1232	$\left(1+p_{i}+p_{j}+2 p_{i} p_{j}\right) / 4$	0.45040
TH01	7	9.3	0.1724	0.3054	$\left(1+p_{i}+p_{j}+2 p_{i} p_{j}\right) / 4$	0.39578
D16S539	12	13	0.3391	0.1634	$\left(1+p_{i}+p_{j}+2 p_{i} p_{j}\right) / 4$	0.40333
frequency ( $f$ )						2.838E-06
1 / frequency (1/f)						352,334

## Probability that a Brother would have the same profile is 1 in 352,334

## Relatedness Statistics

Brothers
Prob (Full-Sibs have same given genotype )

Probability is approximately $1 / 4$ per<br>locus, Therefore, for "L" loci,

The Probability that two full-sibs would have the same given genotype is approximately
$(1 / 4)^{\mathrm{L}}$

## Relatedness Statistics Brothers <br> (Full-Sibs)

$\underline{L}$	$\underline{(1 / 4)}^{\mathrm{L}}$
4	$1 / 256$
5	$1 / 1024$
$\vdots$	$\vdots$
9	$1 / 262,144$
$\vdots$	$\vdots$
13	$1 / 67,108,864$

## Relatedness Statistics Father and Son

Prob (Parent-Child have same given genotype)
$\mathrm{A}_{\mathrm{i}} \mathrm{A}_{\mathrm{i}}$ (homozygote): $\mathrm{p}_{\mathrm{i}}$
$\mathrm{A}_{\mathrm{i}} \mathrm{A}_{\mathrm{j}}$ (heterozygote): $\left(\mathrm{p}_{\mathrm{i}}+\mathrm{p}_{\mathrm{j}}\right) / 2$

			ALLELE	ALLELE	FORMULA	
	ALLELE	ALLELE	FREQ	FREQ	PARENT CHILD	CHILD
LOCUS	1	J	$\mathrm{p}_{\mathrm{i}}$	$\mathrm{p}_{\mathrm{j}}$		
D3S1358	17		0.2118		$\mathrm{p}_{\mathrm{i}}$	0.21180
VWA	14	16	0.1020	0.2015	$\left(p_{i}+p_{j} / 2\right.$	0.15175
FGA	20	23	0.1454	0.1582	$\left(p_{i}+p_{j} / 2\right.$	0.15180
D8S1179	13	15	0.3393	0.1097	$\left(p_{i}+p_{j} / 2\right.$	0.22450
D21S11	29	31.2	0.1811	0.0995	$\left(p_{i}+p_{j} / 2\right.$	0.14030
D18S51	12	18	0.1276	0.0918	$\left(p_{i}+p_{j} / 2\right.$	0.10970
D5S818	11	12	0.4103	0.3538	$\left(p_{i}+p_{j} / 2\right.$	0.38205
D13S317	8	12	0.0995	0.3087	$\left(p_{i}+p_{j} / 2\right.$	0.20410
D7S820	8	11	0.1626	0.2020	$\left(p_{i}+p_{j} / 2\right.$	0.18230
CSF1PO	12	13	0.3251	0.0714	$\left(p_{i}+p_{j} / 2\right.$	0.19825
TPOX	8	9	0.5443	0.1232	$\left(p_{i}+p_{j} / 2\right.$	0.33375
TH01	7	9.3	0.1724	0.3054	$\left(p_{i}+p_{j} / 2\right.$	0.23890
D16S539	12	13	0.3391	0.1634	$\left(p_{i}+p_{j} / 2\right.$	0.25125
frequency ( $f$ )						9.517E-10
1 / frequency (1/f)						1,050,718,457

Probability that a Father or Son would have the same profile is 1 in $1,050,718,457$

## Relatedness Statistics Half-Brothers

Prob (Half-Sibs have same given genotype)
$\mathrm{A}_{\mathrm{i}} \mathrm{A}_{\mathrm{i}}$ (homozygous locus): $\quad \mathrm{p}_{\mathrm{i}}\left(1+\mathrm{p}_{\mathrm{i}}\right) / 2$
$A_{i} A_{j}$ (heterozygous locus): $\left(p_{i}+p_{j}+4 p_{i} p_{j}\right) / 4$

			ALLELE	ALLELE	FORMULA	HALF
	ALLELE	ALLELE	FREQ	FREQ	HALF SIBLING	SIBLING
LOCUS	i	j	$\mathrm{p}_{\mathrm{i}}$	$\mathrm{p}_{\mathrm{j}}$		
D3S1358	17		0.2118		$\mathrm{p}_{\mathrm{i}}\left(1+\mathrm{p}_{\mathrm{i}}\right) / 2$	0.12833
VWA	14	16	0.1020	0.2015	$\left(p_{i}+p_{j}+4 p_{i} p_{j}\right) / 4$	0.09643
FGA	20	23	0.1454	0.1582	$\left(p_{i}+p_{j}+4 p_{i} p_{j}\right) / 4$	0.09890
D8S1179	13	15	0.3393	0.1097	$\left(p_{i}+p_{j}+4 p_{i} p_{j}\right) / 4$	0.14947
D21S11	29	31.2	0.1811	0.0995	$\left(p_{i}+p_{j}+4 p_{i} p_{j}\right) / 4$	0.08817
D18S51	12	18	0.1276	0.0918	$\left(p_{i}+p_{j}+4 p_{i} p_{j}\right) / 4$	0.06656
D5S818	11	12	0.4103	0.3538	$\left(p_{i}+p_{j}+4 p_{i} p_{j}\right) / 4$	0.33619
D13S317	8	12	0.0995	0.3087	$\left(p_{i}+p_{j}+4 p_{i} p_{j}\right) / 4$	0.13277
D7S820	8	11	0.1626	0.2020	$\left(p_{i}+p_{j}+4 p_{i} p_{j}\right) / 4$	0.12400
CSF1PO	12	13	0.3251	0.0714	$\left(p_{i}+p_{j}+4 p_{i} p_{j}\right) / 4$	0.12234
TPOX	8	9	0.5443	0.1232	$\left(p_{i}+p_{j}+4 p_{i} p_{j}\right) / 4$	0.23393
TH01	7	9.3	0.1724	0.3054	$\left(p_{i}+p_{j}+4 p_{i} p_{j}\right) / 4$	0.17210
D16S539	12	13	0.3391	0.1634	$\left(p_{i}+p_{j}+4 p_{i} p_{j}\right) / 4$	0.18103
frequency ( $f$ )						$5.298 \mathrm{E}-12$
1 / frequency (1/f)						188,748,573,845

## Probability that a Half Brother would have the same profile is 1 in 188,748,573,845

## Relatedness Statistics Uncle-Nephew

## Prob (Uncle and Nephew have same given genotype)

$\mathrm{A}_{\mathrm{i}} \mathrm{A}_{\mathrm{i}}$ (homozygous locus):
$\mathrm{p}_{\mathrm{i}}\left(1+\mathrm{p}_{\mathrm{i}}\right) / 2$
$A_{i} A_{j}$ (heterozygous locus):
$\left(p_{i}+p_{j}+4 p_{i} p_{j}\right) / 4$

			ALLELE	ALLELE	FORMULA	
	ALLELE	ALLELE	FREQ	FREQ	UNCLE NEPHEW	NEPHEW
LOCUS	1	j	$\mathrm{p}_{\mathrm{i}}$	$\mathrm{p}_{\mathrm{j}}$		
D3S1358	17		0.2118		$p_{i}\left(1+p_{i}\right) / 2$	0.12833
VWA	14	16	0.1020	0.2015	$\left(p_{i}+p_{j}+4 p_{i} p_{j}\right) / 4$	0.09643
FGA	20	23	0.1454	0.1582	$\left(p_{i}+p_{j}+4 p_{i} p_{j}\right) / 4$	0.09890
D8S1179	13	15	0.3393	0.1097	$\left(p_{i}+p_{j}+4 p_{i} p_{j}\right) / 4$	0.14947
D21S11	29	31.2	0.1811	0.0995	$\left(p_{i}+p_{j}+4 p_{i} p_{j}\right) / 4$	0.08817
D18S51	12	18	0.1276	0.0918	$\left(p_{i}+p_{j}+4 p_{i} p_{j}\right) / 4$	0.06656
D5S818	11	12	0.4103	0.3538	$\left(p_{i}+p_{j}+4 p_{i} p_{j}\right) / 4$	0.33619
D13S317	8	12	0.0995	0.3087	$\left(p_{i}+p_{j}+4 p_{i} p_{j}\right) / 4$	0.13277
D7S820	8	11	0.1626	0.2020	$\left(p_{i}+p_{j}+4 p_{i} p_{j}\right) / 4$	0.12400
CSF1PO	12	13	0.3251	0.0714	$\left(p_{i}+p_{j}+4 p_{i} p_{j}\right) / 4$	0.12234
TPOX	8	9	0.5443	0.1232	$\left(p_{i}+p_{j}+4 p_{i} p_{j}\right) / 4$	0.23393
TH01	7	9.3	0.1724	0.3054	$\left(p_{i}+p_{j}+4 p_{i} p_{j}\right) / 4$	0.17210
D16S539	12	13	0.3391	0.1634	$\left(p_{i}+p_{j}+4 p_{i} p_{j}\right) / 4$	0.18103
frequency ( $f$ )						$5.298 \mathrm{E}-12$
$1 /$ frequency (1/f)						188,748,573,845

# Probability that a Uncle or a Nephew would have the 

 same profile is 1 in $188,748,573,845$
## Relatedness Statistics

## First Cousins

Prob (First Cousins have same given genotype)
$\mathrm{A}_{\mathrm{i}} \mathrm{A}_{\mathrm{i}}$ (homozygous locus): $\quad \mathrm{p}_{\mathrm{i}}\left(1+3 \mathrm{p}_{\mathrm{i}}\right) / 4$
$\mathrm{A}_{\mathrm{i}} \mathrm{A}_{\mathrm{j}}$ (heterozygous locus): $\left(\mathrm{p}_{\mathrm{i}}+\mathrm{p}_{\mathrm{j}}+12 \mathrm{p}_{\mathrm{i}} \mathrm{p}_{\mathrm{j}}\right) / 8$

			ALLELE	ALLELE	FORMULA	FIRST
	ALLELE	ALLELE	FREQ	FREQ	FIRST COUSIN	COUSIN
LOCUS	i	j	$\mathrm{p}_{\mathrm{i}}$	$\mathrm{p}_{\mathrm{j}}$		
D3S1358	17		0.2118		$p_{i}\left(1+3 p_{i}\right) / 4$	0.08659
VWA	14	16	0.1020	0.2015	$\left(p_{i}+p_{j}+12 p_{i} p_{j} / 8\right.$	0.06877
FGA	20	23	0.1454	0.1582	$\left(p_{i}+p_{j}+12 p_{i} p_{j} / 8\right.$	0.07245
D8S1179	13	15	0.3393	0.1097	$\left(p_{i}+p_{j}+12 p_{i} p_{j} / 8\right.$	0.11196
D21S11	29	31.2	0.1811	0.0995	$\left(p_{i}+p_{j}+12 p_{i} p_{j} / 8\right.$	0.06210
D18S51	12	18	0.1276	0.0918	$\left(p_{i}+p_{j}+12 p_{i} p_{j} / 8\right.$	0.04500
D5S818	11	12	0.4103	0.3538	$\left(p_{i}+p_{j}+12 p_{i} p_{j} / 8\right.$	0.31326
D13S317	8	12	0.0995	0.3087	$\left(p_{i}+p_{j}+12 p_{i} p_{j} / 8\right.$	0.09710
D7S820	8	11	0.1626	0.2020	$\left(p_{i}+p_{j}+12 p_{i} p_{j} / 8\right.$	0.09484
CSF1PO	12	13	0.3251	0.0714	$\left(p_{i}+p_{j}+12 p_{i} p_{j} / 8\right.$	0.08438
TPOX	8	9	0.5443	0.1232	$\left(p_{i}+p_{j}+12 p p_{j} p_{j} / 8\right.$	0.18402
TH01	7	9.3	0.1724	0.3054	$\left(p_{i}+p_{j}+12 p_{i} p_{j} / 8\right.$	0.13870
D16S539	12	13	0.3391	0.1634	$\left(p_{i}+p_{j}+12 p_{i} p_{j} / 8\right.$	0.14593
frequency (f)						$1.224 \mathrm{E}-13$
1 / frequency (1/f)						8,171,074,738,912

## Probability that a First Cousin would have the same profile is 1 in $8,171,074,738,912$

Sexual Assault Case Processed by the Arizona
Department of Public Safety, Southern Regional
Crime Laboratory in Tucson for the Farmington, New Mexico Police Department

Sexual Assault Case in which the suspects DNA profile matched the DNA profile from the male fraction of the vaginal swab collected from victim

Siin Popstats 5.3
File Edit Profile Case Type Configuration Window Help


® Single Sample Target Pro．．．$\square \square$			
A，	Reference：		
LDAS	Suspect Farmington，NM Rape Cased		
He	Locus	Allele 1	Allele 2
LDIS	（x D3S1358	15	16
K	区 W／A	17	19
	区 FGA	21	27
V	区 D8S1179	13	14
	区 D21S11	30	31
	区 D18S51	16	18
	区 D5S818	11	
	区 ${ }^{\text {¢ }}$ D13S317	11	12
	（ D75820	10	12
	区 CSF1PO	9	10
	区 TPOX	8	11
	区 TH01	7	
	（ ${ }^{\text {d }} 165539$	9	13
	1		$\cdots$

Reference $=$ Suspect Farmington，NM Rape Case

## $f$ Summary of Probability Statistics

Locus	Apache	Minnesota	Navajo
D3S1358	$2.5916 \mathrm{E}-01$	$2.7926 \mathrm{E}-01$	$2.2338 \mathrm{E}-01$
WWA	$3.9386 \mathrm{E}-02$	$5.1540 \mathrm{E}-02$	$5.0966 \mathrm{E}-02$
FGA	$8.6841 \mathrm{E}-03$	$1.1859 \mathrm{E}-02$	$2.1050 \mathrm{E}-02$
D8S1179	$2.0713 \mathrm{E}-01$	$2.3386 \mathrm{E}-01$	$1.7463 \mathrm{E}-01$
D21S11	$7.4602 \mathrm{E}-02$	$5.7296 \mathrm{E}-02$	$7.3979 \mathrm{E}-02$
D18551	$3.4844 \mathrm{E}-02$	$1.3689 \mathrm{E}-02$	$1.8441 \mathrm{E}-02$
D5S818	$3.5049 \mathrm{E}-01$	$1.9820 \mathrm{E}-01$	$3.7487 \mathrm{E}-01$
D135317	$1.1604 \mathrm{E}-01$	$1.2297 \mathrm{E}-01$	$9.9909 \mathrm{E}-02$
D75820	$1.1685 \mathrm{E}-01$	$1.1826 \mathrm{E}-01$	$9.4054 \mathrm{E}-02$
CSF1PO	$2.9473 \mathrm{E}-02$	$6.5583 \mathrm{E}-02$	$4.0468 \mathrm{E}-02$
TPOX	$2.0366 \mathrm{E}-01$	$3.0159 \mathrm{E}-01$	$2.6666 \mathrm{E}-01$
TH01	$2.2537 \mathrm{E}-01$	$2.4171 \mathrm{E}-01$	$4.1000 \mathrm{E}-01$
D16S539	$3.7885 \mathrm{E}-02$		$5.9583 \mathrm{E}-02$


	Apache	Minnesota	Navajo
Total	$1.162 \mathrm{E}-14$	$4.314 \mathrm{E}-13$	$5.302 \mathrm{E}-14$

Siilin Popstats 5.3
File Edit Profile Case Type Configuration Window Help
受気可

3 Single Sample Target Pro．．．－$\quad$ Y／id Inverse Summary of Probability Statistics


Reference：
Suspect Farmington，NM Rape Case

	Locus	Allele 1	Allele 2	－
区	D351358	15	16	
区	W／A	17	19	
区	FGA	21	27	
区	D851179	13	14	
区	D21511	30	31	
区	D18551	16	18	
区	D55818	11		
区	D135317	11	12	
区	D75820	10	12	
区	CSF1P0	9	10	
区	TPOX	8	11	
区	TH01	7		
区	D165539	9	13	－
4			－	


Locus	Apache	Minnesota	Navaio
D3S1358	4	4	4
W／A	25	19	20
FGA	115	84	48
D851179	5	4	6
D21511	13	17	14
D18551	29	73	54
D5S818	3	5	3
D135317	9	8	10
D75820	9	8	11
CSF1P0	34	15	25
TPOX	5	3	4
TH01	4	4	2
D165539	26		17
	Apache	Minnesota	Navajo
Total	86，060，000，000，000	2，318，000，000，000	18，860，000，000，000

## THE BROTHER DID IT?

Defense argued that suspects brother committed the crime. Defense called Dr. Dan Krane from Wright State University in Ohio to testify to probability of brother having the same profile.

Hilit Popstats 5.3
File Edit Profile Gase Type Configuration Window Help



Pill Popstats 5.3
File Edit Profile Gase Type ConFiguration Window Help


Relatedness Statistics


The approximate frequency of this profile in Native Americans (Navajo) is 1 in 18.86 trillion ( $1.886 \times 10^{13}$ )

The probability that the brother of the suspect has the identical profile is

$$
9.387 \times 10^{-6}
$$

It is $\mathbf{1 0 6 , 5 0 0}$ times more likely to these genetic results if the male fraction of the vaginal swab originated from the suspect as opposed to his untested brother

## THEBROIHRRDDII?

The problem was that the suspects brother was deceased and not available for testing

The Trial ended with a hung jury

## Relatedness Statistics

We can calculate a Likelihood Ratio (for any given profile) in which the probability that the suspect is the contributor of the evidence is compared with the probability that a specified relative is the contributor of the evidence

In the following example the profile at a given locus is either homozygous or heterozygous and the allele frequency is 0.1

Formulas: B.S. Weir, 1996. Genetic Data Analysis II. Table 5.7 (p 221).

Relationship

Homozygous Locus

Heterozygous Locus

$\mathbf{i J}$	100.00	50.00
Full-Sibs	3.31	3.28
$\mathbf{B}$	0	0
$\mathbf{N}$	8	16.67
Uncle-Nephew	18.18	16.67
First Cousins	30.76	25.00

# Kinship Determination From Genotype Data On Two Individuals 

Currently Popstats does not have the capability of calculating the most likely kinship relationship between two individuals whose genotypes are known.

## Dilil Popstats 5.3-[Multiple Samples Target Profile]

 W1 File Edit Frofile Gase Type Configuration Window Help

	Reference:		Forensic-Multiple Samples amples					
	\|61692-1				Q1:	61692-2		$\pm$
	Locus	A.llele 1	Allele 2		Allele 1	Allele 2	*	
LDIS		17	18		16			
$\psi$	( $\times$ V ${ }^{\text {a }}$	15	20		16	20		
	(x) FGA	24	25		22	25		
4	(x) D8S1179	12	15		12	15		
	(X) D21511	27	30		29	30		
	(X D18551	16	17		17			
	(x) D5S818	8	13		8	13		
	$\left(\begin{array}{lll}\mathbf{x} & \text { D135317 }\end{array}\right.$	11	12		11	12		
	(x) D75820	10	11		10	12		
	(x) CSF1PO	9	10		10			
	(x TPOX	9	10		9			
	(x TH01	8			8			
	(x) $\mathbf{x} 165539$	11	12		11	13		

## Hilil Popstats 5.3 - [Multiple Samples Target Profile]

T0, File Edit Profile Case Type Configuration Window Help

-	



!
Specimen 61692-2 has 1 bands/alleles at locus D351358, and this number is not equal to the corresponding number of bands/alleles, 2 , in the reference. Therefore, 61692-2 will not be used in the calculations.

Nilil Popstats 5.3 - [Multiple Samples Target Profile]
ח!1 File Edit Profile Case Type Configuration Window Help


None of the questioned samples match the reference in the number of bands/alleles in each locus. No calculation will be performed.

## Kinship Determination From Genotype Data On Two Individuals

There are a number of programs that are available to provide statistical support for the kinship relationship between two individuals with observed genotypes.

Currently the FBI has released a contract to develop the appropriate software which would be included in future versions of Popstats.

## Kinship Determination From

## Genotype Data On Two Individuals

The programs that are available to provide statistical support for the kinship relationship between two individuals with observed genotypes essentially make use of the same algorithm.

Let $\mathrm{Gx}(1)$ and $\mathrm{Gy}(1)$ be the genotypes of two individuals X and Y , the algorithm finds the best support for the kinship relationship between individuals X and Y based upon genotypes Gx(1) and $\operatorname{Gy}(1)$ for L loci $(1=1,2, \ldots, \mathrm{~L})$

## Kinship Determination From Genotype Data On Two Individuals

The algorithm requires two sets of information.
First, the kinship of two individuals dictate with what probabilities the genotypes of two individuals will have two, one or zero alleles IBD. These three quantities are denoted by:

$$
\phi_{2}, \phi_{1}, \text { and } \phi_{0},\left(0 \leq \phi_{i} \leq 1, \phi_{2}+\phi_{1}+\phi_{0}=1\right),
$$

IBD status 2,1 , and 0 are called as events $\mathrm{I}, \mathrm{T}$, and O .

## Kinship Determination From Genotype Data On Two Individuals

The algorithm requires two sets of information.
Second, the probabilities of $\mathrm{Gy}(1)$ given $\mathrm{Gx}(\mathrm{l})$ at the l-th locus, under the scenarios of I, T, and O (i.e., under the scenario that $\mathrm{Gx}(\mathrm{l})$ and $\mathrm{Gy}(1)$ have 2,1 , or 0 alleles IBD)
The three conditional probabilities are:
$P_{2}(x y)=$ probability of $G_{y}(1)$ given $G_{x}(1)$ with 2 of their alleles IBD
$P_{1}(x y)=$ probability of $G_{y}(1)$ given $G_{x}(1)$ with 1 of their alleles IBD
$P_{0}(x y)=$ probability of $G_{y}(1)$ given $G_{x}(1)$ with 0 of their alleles IBD

## Kinship Determination From

 Genotype Data On Two IndividualsThe three conditional probabilities are:
$P_{2}(x y)=$ probability of $G_{y}(1)$ given $G_{x}(1)$ with 2 of
their alleles IBD
$\mathrm{P}_{1}(\mathrm{xy})=$ probability of $\mathrm{G}_{\mathrm{y}}(\mathrm{l})$ given $\mathrm{G}_{\mathrm{x}}(\mathrm{l})$ with 1 of their alleles IBD
$\mathrm{P}_{0}(\mathrm{xy})=$ probability of $\mathrm{G}_{\mathrm{y}}(1)$ given $\mathrm{G}_{\mathrm{x}}(1)$ with 0 of their alleles IBD
The likelihood of observing $\mathrm{G}_{\mathrm{y}}(1)$ given $\mathrm{G}_{\mathrm{x}}(1)$ for a given kinship (i.e., for a given set of $\phi_{2}, \phi_{1}$, and $\phi_{0}$ is computed by

# Kinship Determination From Genotype Data On Two Individuals 

$$
\left[\mathrm{P}_{2}(\mathrm{xy}) \mathrm{x} \phi_{2}\right]+\left[\mathrm{P}_{1}(\mathrm{xy}) \mathrm{x} \phi_{1}\right]+\left[\mathrm{P}_{0}(\mathrm{xy}) \mathrm{x} \phi_{0}\right]
$$

The likelihoods that are computed for each locus can be multiplied over all L loci to compute the combined likelihood under a specified kinship relationship. The kinship that provides the maximum likelihood is the best-supported kinship relationship for the observed genotype profiles of individuals X and Y .

At a Single Locus, Two Individuals Can Have the Following Genotypes


## Identity By Descent (IBD) Coefficients:



- Unrelated

1/2
1
1/2
1/4
3/4
1/4


0
0
0
0
1

How Are The Identity By Descent (IBD) Coefficients Determined:

Full sibs

 $\phi_{0}$

Lets say we have two parents AB and CD , their offspring are either $\mathrm{AC}, \mathrm{AD}, \mathrm{BC}$, or BD

$$
A C A D \quad B C \quad B D
$$

AC	2	1	1	0	$\begin{aligned} & 2 \text { alleles IBD }=4 / 16 \text { or } 1 / 4 \\ & 1 \text { alleles IBD }=8 / 16 \text { or } 1 / 2 \\ & 0 \text { alleles IBD }=4 / 16 \text { or } 1 / 4 \end{aligned}$
AD	1	2	0	1	
BC	1	0	2	1	
BD	0	1	1	2	

How Are The Identity By Descent (IBD) Coefficients Determined:

Lets say we have two parents AB and CD , their offspring are either $\mathrm{AC}, \mathrm{AD}, \mathrm{BC}$, or BD

$$
A B C D
$$

AC	1	1	2 alleles IBD $=0 / 8$ or 0
AD	1	1	
BC	1	1	
BD	1	1	

## How Are The Identity By Descent (IBD)

 Coefficients Determined:Half-sibs


0
$\phi_{1}$
1/2
$\phi_{0}$
1/2

Lets say we have three parents $\mathrm{AB}(\mathrm{m}), \mathrm{CD}$ (af1), and EF (af2) their offspring are either $\mathrm{AC}, \mathrm{AD}, \mathrm{BC}, \mathrm{BD}$ or $\mathrm{AE}, \mathrm{AF}, \mathrm{BE}, \mathrm{BF}$

	AE	AF	BE	BF	$\begin{aligned} & 2 \text { alleles IBD }=0 / 16 \text { or } 0 \\ & 1 \text { alleles IBD }=8 / 16 \text { or } 1 / 2 \end{aligned}$
AC	1	1	0	0	
AD	1	1	0	0	
BC	0	0	1	1	
BD	0	0	1	1	

## The Identity By Descent (IBD) Coefficients

$\phi_{2} \quad \phi_{1} \quad \phi_{0}$
Half-Sibs$0 \quad 1 / 2$1/2
Uncle/Aunt/Nephew/Niece ..... 01/2
1/2
Grandparent-Grandchild
01/21/2

IBD Coefficients are the same for these kinship relationships

## Kinship Formula:

## C.C. Li and L.Sachs, 1954. Method of ITO stochastic matrices

## Transition matrix for 2 alleles IBD

$$
I=\begin{array}{c|ccc} 
& \mathrm{A}_{1} \mathrm{~A}_{1} & \mathrm{~A}_{1} \mathrm{~A}_{2} & \mathrm{~A}_{2} \mathrm{~A}_{2} \\
\mathrm{~A}_{1} \mathrm{~A}_{1} & 1 & 0 & 0 \\
\mathrm{~A}_{1} \mathrm{~A}_{2} & 0 & 1 & 0 \\
\mathrm{~A}_{1} \mathrm{~A}_{2} & 0 & 0 & 1
\end{array}
$$

## Kinship Formula

Transition matrix for 1 allele IBD

$T=$|  | $\mathrm{A}_{1} \mathrm{~A}_{1}$ | $\mathrm{~A}_{1} \mathrm{~A}_{2}$ | $\mathrm{~A}_{2} \mathrm{~A}_{2}$ |
| :---: | :---: | :---: | :---: |
| $\mathrm{~A}_{1} \mathrm{~A}_{1}$ | $\mathrm{p}_{1}$ | $\mathrm{p}_{2}$ | 0 |
| $\mathrm{~A}_{1} \mathrm{~A}_{2}$ | $0.5 \mathrm{p}_{1}$ | $0.5\left(\mathrm{p}_{1}+\mathrm{p}_{2}\right)$ | $0.5 \mathrm{p}_{2}$ |
| $\mathrm{~A}_{2} \mathrm{~A}_{2}$ | 0 | $\mathrm{p}_{1}$ | $\mathrm{p}_{2}$ |

## Kinship Formula:

## Transition matrix for 0 alleles IBD

$$
\mathrm{O}=\begin{array}{l|lll} 
& \mathrm{A}_{1} \mathrm{~A}_{1} & \mathrm{~A}_{1} \mathrm{~A}_{2} & \mathrm{~A}_{2} \mathrm{~A}_{2} \\
\mathrm{~A}_{1} \mathrm{~A}_{1} & \mathrm{p}_{1}{ }^{2} & 2 \mathrm{p}_{1} \mathrm{p}_{2} & \mathrm{p}_{2}{ }^{2} \\
\mathrm{~A}_{1} \mathrm{~A}_{2} & \mathrm{p}_{1}{ }^{2} & 2 \mathrm{p}_{1} \mathrm{p}_{2} & \mathrm{p}_{2}{ }^{2} \\
\mathrm{~A}_{2} \mathrm{~A}_{2} & \mathrm{p}_{1}{ }^{2} & 2 \mathrm{p}_{1} \mathrm{p}_{2} & \mathrm{p}_{2}{ }^{2}
\end{array}
$$

## Kinship Formulas:

$\left[\mathrm{P}_{2}(\mathrm{xy}) \mathrm{x} \phi_{2}\right]+\left[\mathrm{P}_{1}(\mathrm{xy}) \mathrm{x} \phi_{1}\right]+\left[\mathrm{P}_{0}(\mathrm{xy}) \mathrm{x} \phi_{0}\right]$

$\frac{\# 1}{1}$	$\frac{\# 2}{}$	frequency
AB	AB	$\phi_{2}+0.5 \phi_{1}\left(\mathrm{p}_{\mathrm{A}}+\mathrm{p}_{\mathrm{B}}\right)+2 \phi_{0} \mathrm{p}_{\mathrm{A}} \mathrm{p}_{\mathrm{B}}$
AA	AA	$\phi_{2}+\phi_{1} p_{A}+\phi_{0} \mathrm{p}_{\mathrm{A}}^{2}$
AA	AB	$\phi_{1} \mathrm{p}_{\mathrm{B}}+2 \phi_{0} \mathrm{p}_{A} \mathrm{p}_{\mathrm{B}}$
AB	AC	$0.5 \phi_{1} p_{\mathrm{C}}+2 \phi_{0} \mathrm{p}_{\mathrm{A}} \mathrm{p}_{\mathrm{C}}$
AB	CD	$2 \phi_{0} \mathrm{p}_{\mathrm{C}} \mathrm{p}_{\mathrm{D}}$
AA	BB	$\phi_{0} \mathrm{p}_{\mathrm{B}}^{2}$
AA	BC	$2 \phi_{0} \mathrm{p}_{\mathrm{B}} \mathrm{p}_{\mathrm{C}}$

## Likelihood Ratios for Full- \& Half-Sibs

 full-sib : half-sib : unrelated$A B \quad A B \quad(1+p+q+2 p q):(p+q+4 p q): 8 p q$
AA AA

$$
(1+p)^{2} \quad: \quad 2 p(1+p)
$$

$:(2 p)^{2}$
AA AB
(1+p)
: ( $1+2 \mathrm{p}$ )
: 4p
AB AC
$(1+2 p):(1+4 p)$
: 8p
AB CD
1
1
2
4
AA BB
1
2
1
AA BC
2
: 4

## KinTest Program Created by

## George Carmody,

 Carleton University, Canada
## File Edit Yiew Insert Format Iools Data Window Help Acrobat

国 kintest
-

28-Sep-03	KinTest $^{\text {© }}$ - CODIS Core Loci +	
ID \#1:	I	ID \#2:


	Test	1	2	1	2
1	D3S1358				
2	WA				
3	FGA				
4	D8S1179				
5	D21S11				
6	D18551				
7	D55818				
8	D13S317				
9	D78820				
10	D16S539				
11	THO1				
12	TPOX				
13	CSF1PO				
14	D2S1338				
15	D19S433				
16	F13A01				
17	FESFPS				
18	F13B				
19	LPL				
20	Pent E				
21	Pent D				




27-Sep-03	KinTest $^{\text {© }}$ - CODIS Core Loci +			
ID \#1:	P-61692	ID \#2:		
R.O.				




	Test	1	$\mathbf{2}$
	D3S1358	17	18
2	WWA	15	20
3	FGA	24	25
4	D8S1179	12	15
5	D21S11	27	30
6	D18S51	16	17
7	D5S818	8	13
8	D13S317	11	12
9	D7S820	10	11
10	D16S539	11	12
11	THO1	8	8
12	TPOX	9	10
13	CSF1PO	9	10
14	D2S1338	19	23
15	D19S433	14.2	16
16	F13A01	3.2	15
17	FESFPS	11	12
18	F13B	6	10
19	LPL	11	12
20	Pent E		
21	Pent D		


$\mathbf{1}$	$\mathbf{2}$
16	16
16	20
22	25
12	15
29	30
17	17
8	13
11	12
10	12
11	13
8	8
9	9
10	10
19	19
14	14.2
3.2	15
11	12
9	10
11	12


Hsib
0.50
10.30
2.31
2.50
1.04
2.11
11.11
1.30
0.93
0.96
4.48
2.53
1.49
2.23
8.10
11.59
1.34
0.81
1.55


Fsib	
Hsib	AfAm
Pchild	Cauc
Cousin	Hisp
	Xoox
	Population
Cauc	

Total: $\square$
$5.0 E+06$


Residual $\mathrm{CPI}=4.3 \mathrm{E}+9 \mathrm{X} 0.001=4.3 \mathrm{E}+6$

	Test		$\mathbf{1}$
	D3S1358	$\mathbf{2}$	
	D3	17	18
	WWA	15	20
3	FGA	24	25
4	D8S1179	12	15
5	D21S11	27	30
6	D18S51	16	17
	D5S818	8	13
8	D13S317	11	12
9	D7S820	10	11
10	D16S539	11	12
11	THO1	8	8
12	TPOX	9	10
13	CSF1PO	9	10
14	D2S1338	19	23
15	D19S433	14.2	16
16	F13A01	3.2	15
17	FESFPS	11	12
18	F13B	6	10
19	LPL	11	12
20	Pent E		
21	Pent D		


$\mathbf{1}$	$\mathbf{2}$
16	16
16	20
22	25
12	15
29	30
17	17
8	13
11	12
10	12
11	13
8	8
9	9
10	10
19	19
14	14.2
3.2	15
11	12
9	10
11	12


Cousin
0.75
5.65
1.66
1.75
1.02
1.55
6.05
1.15
0.97
0.98
2.74
1.77
1.24
1.61
4.55
6.29
1.17
0.91
1.28


Fsib
Hsib
Pchild
Cousin

Total: $\square$
$4.8 E+04$

- Print -

Erase

STR 1	STR 2

Kinship Determination For Genotype Data On Two Individuals in Case P-61692

$$
\begin{array}{ll}
\text { Full }- \text { Sibs } & 3.3 \mathrm{E}+9 \\
\text { Half }- \text { Sibs } & 5.0 \mathrm{E}+6 \\
\text { Parent - Child } & 4.3 \mathrm{E}+6 \\
\text { First Cousins } & 4.8 \mathrm{E}+4
\end{array}
$$

The likelihood ratio comparing Full-Sib to Half-Sib is

$$
3.3 \mathrm{E}+9 / 5.0 \mathrm{E}+6=660
$$

It is 660 times more likely given the genotype of individual one, and the genotype of individual two, that the two individuals are Full-Sibs as opposed to Half-Sibs

# Kinship Analysis P-61692 at the D5S818 Locus 

Individual 1
8
13

Full - Sib
Half - Sib
Parent - Child
First Cousins
Unrelated

$$
\phi_{2}+0.5 \phi_{1}\left(\mathrm{p}_{\mathrm{A}}+\mathrm{p}_{\mathrm{B}}\right)+2 \phi_{0} \mathrm{p}_{\mathrm{A}} \mathrm{p}_{\mathrm{B}}
$$

## Kinship Analysis P-61692 at the D5S818 Locus

$$
\phi_{2}+0.5 \phi_{1}\left(p_{A}+p_{B}\right)+2 \phi_{0} p_{A} p_{B}
$$

$$
\begin{array}{ll}
\text { Full }- \text { Sibs } & =0.25+(0.5 * 0.5(0.0128+0.1462))+(2 * 0.25 * 0.0128 * 0.1462) \\
\text { Half }- \text { Sibs } & =(0.5 * 0.5(0.0128+0.1462))+(2 * 0.5 * 0.0128 * 0.1462) \\
\text { Parent }- \text { Child } & =(0.5 *(0.0128+0.1462)) \\
\text { First Cousins } & =(0.5 * 0.25(0.0128+0.1462))+(2 * 0.75 * 0.0128 * 0.1462) \\
\text { Unrelated } & =2 * 0.0128 * 0.1462
\end{array}
$$

## Kinship Analysis P-61692 at the D5S818 Locus

Full - Sibs<br>0.291<br>Half - Sibs<br>0.042<br>Parent - Child<br>0.080<br>First Cousins<br>Unrelated<br>0.004

Divide each of the kinship likelihood by the likelihood for Unrelated

## Kinship Analysis P-61692 at the D5S818 Locus

Full - Sibs
77.67

Half - Sibs
Parent - Child
First Cousins
Unrelated
11.12
21.24
6.06

1

## Thank you!

